@article{SoundararajanMarincolaLiongetal.2023, author = {Soundararajan, Manonmani and Marincola, Gabriella and Liong, Olivia and Marciniak, Tessa and Wencker, Freya D. R. and Hofmann, Franka and Schollenbruch, Hannah and Kobusch, Iris and Linnemann, Sabrina and Wolf, Silver A. and Helal, Mustafa and Semmler, Torsten and Walther, Birgit and Schoen, Christoph and Nyasinga, Justin and Revathi, Gunturu and Boelhauve, Marc and Ziebuhr, Wilma}, title = {Farming practice influences antimicrobial resistance burden of non-aureus staphylococci in pig husbandries}, series = {Microorganisms}, volume = {11}, journal = {Microorganisms}, number = {1}, issn = {2076-2607}, doi = {10.3390/microorganisms11010031}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312750}, year = {2023}, abstract = {Non-aureus staphylococci (NAS) are ubiquitous bacteria in livestock-associated environments where they may act as reservoirs of antimicrobial resistance (AMR) genes for pathogens such as Staphylococcus aureus. Here, we tested whether housing conditions in pig farms could influence the overall AMR-NAS burden. Two hundred and forty porcine commensal and environmental NAS isolates from three different farm types (conventional, alternative, and organic) were tested for phenotypic antimicrobial susceptibility and subjected to whole genome sequencing. Genomic data were analysed regarding species identity and AMR gene carriage. Seventeen different NAS species were identified across all farm types. In contrast to conventional farms, no AMR genes were detectable towards methicillin, aminoglycosides, and phenicols in organic farms. Additionally, AMR genes to macrolides and tetracycline were rare among NAS in organic farms, while such genes were common in conventional husbandries. No differences in AMR detection existed between farm types regarding fosfomycin, lincosamides, fusidic acid, and heavy metal resistance gene presence. The combined data show that husbandry conditions influence the occurrence of resistant and multidrug-resistant bacteria in livestock, suggesting that changing husbandry practices may be an appropriate means of limiting the spread of AMR bacteria on farms.}, language = {en} } @article{MichauxGerovacHansenetal.2023, author = {Michaux, Charlotte and Gerovac, Milan and Hansen, Elisabeth E. and Barquist, Lars and Vogel, J{\"o}rg}, title = {Grad-seq analysis of Enterococcus faecalis and Enterococcus faecium provides a global view of RNA and protein complexes in these two opportunistic pathogens}, series = {microLife}, volume = {4}, journal = {microLife}, doi = {10.1093/femsml/uqac027}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-313311}, year = {2023}, abstract = {Enterococcus faecalis and Enterococcus faecium are major nosocomial pathogens. Despite their relevance to public health and their role in the development of bacterial antibiotic resistance, relatively little is known about gene regulation in these species. RNA-protein complexes serve crucial functions in all cellular processes associated with gene expression, including post-transcriptional control mediated by small regulatory RNAs (sRNAs). Here, we present a new resource for the study of enterococcal RNA biology, employing the Grad-seq technique to comprehensively predict complexes formed by RNA and proteins in E. faecalis V583 and E. faecium AUS0004. Analysis of the generated global RNA and protein sedimentation profiles led to the identification of RNA-protein complexes and putative novel sRNAs. Validating our data sets, we observe well-established cellular RNA-protein complexes such as the 6S RNA-RNA polymerase complex, suggesting that 6S RNA-mediated global control of transcription is conserved in enterococci. Focusing on the largely uncharacterized RNA-binding protein KhpB, we use the RIP-seq technique to predict that KhpB interacts with sRNAs, tRNAs, and untranslated regions of mRNAs, and might be involved in the processing of specific tRNAs. Collectively, these datasets provide departure points for in-depth studies of the cellular interactome of enterococci that should facilitate functional discovery in these and related Gram-positive species. Our data are available to the community through a user-friendly Grad-seq browser that allows interactive searches of the sedimentation profiles (https://resources.helmholtz-hiri.de/gradseqef/).}, language = {en} } @article{RaschigRamirez‐ZavalaWiestetal.2023, author = {Raschig, Martina and Ram{\´i}rez-Zavala, Bernardo and Wiest, Johannes and Saedtler, Marco and Gutmann, Marcus and Holzgrabe, Ulrike and Morschh{\"a}user, Joachim and Meinel, Lorenz}, title = {Azobenzene derivatives with activity against drug-resistant Candida albicans and Candida auris}, series = {Archiv der Pharmazie}, volume = {356}, journal = {Archiv der Pharmazie}, number = {2}, doi = {10.1002/ardp.202200463}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312295}, year = {2023}, abstract = {Increasing resistance against antimycotic drugs challenges anti-infective therapies today and contributes to the mortality of infections by drug-resistant Candida species and strains. Therefore, novel antifungal agents are needed. A promising approach in developing new drugs is using naturally occurring molecules as lead structures. In this work, 4,4'-dihydroxyazobenzene, a compound structurally related to antifungal stilbene derivatives and present in Agaricus xanthodermus (yellow stainer), served as a starting point for the synthesis of five azobenzene derivatives. These compounds prevented the growth of both fluconazole-susceptible and fluconazole-resistant Candida albicans and Candida auris strains. Further in vivo studies are required to confirm the potential therapeutic value of these compounds.}, language = {en} } @article{OkudaLenzSeitzetal.2023, author = {Okuda, Takumi and Lenz, Ann-Kathrin and Seitz, Florian and Vogel, J{\"o}rg and H{\"o}bartner, Claudia}, title = {A SAM analogue-utilizing ribozyme for site-specific RNA alkylation in living cells}, series = {Nature Chemistry}, journal = {Nature Chemistry}, doi = {10.1038/s41557-023-01320-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-328762}, year = {2023}, abstract = {Post-transcriptional RNA modification methods are in high demand for site-specific RNA labelling and analysis of RNA functions. In vitro-selected ribozymes are attractive tools for RNA research and have the potential to overcome some of the limitations of chemoenzymatic approaches with repurposed methyltransferases. Here we report an alkyltransferase ribozyme that uses a synthetic, stabilized S-adenosylmethionine (SAM) analogue and catalyses the transfer of a propargyl group to a specific adenosine in the target RNA. Almost quantitative conversion was achieved within 1 h under a wide range of reaction conditions in vitro, including physiological magnesium ion concentrations. A genetically encoded version of the SAM analogue-utilizing ribozyme (SAMURI) was expressed in HEK293T cells, and intracellular propargylation of the target adenosine was confirmed by specific fluorescent labelling. SAMURI is a general tool for the site-specific installation of the smallest tag for azide-alkyne click chemistry, which can be further functionalized with fluorophores, affinity tags or other functional probes.}, language = {en} } @article{RamirezZavalaBetsovaSchwanfelderetal.2023, author = {Ram{\´i}rez-Zavala, Bernardo and Betsova, Darina and Schwanfelder, Sonja and Kr{\"u}ger, Ines and Mottola, Austin and Kr{\"u}ger, Thomas and Kniemeyer, Olaf and Brakhage, Axel A. and Morschh{\"a}user, Joachim}, title = {Multiple phosphorylation sites regulate the activity of the repressor Mig1 in \(Candida\) \(albicans\)}, series = {mSphere}, volume = {8}, journal = {mSphere}, number = {6}, doi = {10.1128/msphere.00546-23}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350060}, year = {2023}, abstract = {ABSTRACT The highly conserved heterotrimeric protein kinase SNF1 is important for metabolic adaptations in the pathogenic yeast Candida albicans. A key function of SNF1 is to inactivate the repressor protein Mig1 and thereby allow the expression of genes that are required for the utilization of alternative carbon sources when the preferred carbon source, glucose, is absent or becomes limiting. However, how SNF1 controls Mig1 activity in C. albicans has remained elusive. Using a phosphoproteomics approach, we found that Mig1 is phosphorylated at multiple serine residues. Replacement of these serine residues by nonphosphorylatable alanine residues strongly increased the repressor activity of Mig1 in cells lacking a functional SNF1 complex, indicating that additional protein kinases are involved in the regulation of Mig1. Unlike wild-type Mig1, whose levels strongly decreased when the cells were grown on sucrose or glycerol instead of glucose, the levels of a mutant Mig1 protein lacking nine phosphorylation sites remained high under these conditions. Despite the increased protein levels and the absence of multiple phosphorylation sites, cells with a functional SNF1 complex could still sufficiently inhibit the hyperactive Mig1 to enable wild-type growth on alternative carbon sources. In line with this, phosphorylated forms of the mutant Mig1 were still detected in the presence and absence of a functional SNF1, demonstrating that Mig1 contains additional, unidentified phosphorylation sites and that downstream protein kinases are involved in the control of Mig1 activity by SNF1. IMPORTANCE The SNF1 protein kinase signaling pathway, which is highly conserved in eukaryotic cells, is important for metabolic adaptations in the pathogenic yeast Candida albicans. However, so far, it has remained elusive how SNF1 controls the activity of one of its main effectors, the repressor protein Mig1 that inhibits the expression of genes required for the utilization of alternative carbon sources when glucose is available. In this study, we have identified multiple phosphorylation sites in Mig1 that contribute to its inactivation. Mutation of these sites strongly increased Mig1 repressor activity in the absence of SNF1, but SNF1 could still sufficiently inhibit the hyperactive Mig1 to enable growth on alternative carbon sources. These findings reveal features of Mig1 that are important for controlling its repressor activity. Furthermore, they demonstrate that both SNF1 and additional protein kinases regulate Mig1 in this pathogenic yeast.}, language = {en} } @article{DaeullaryImdahlDietrichetal.2023, author = {D{\"a}ullary, Thomas and Imdahl, Fabian and Dietrich, Oliver and Hepp, Laura and Krammer, Tobias and Fey, Christina and Neuhaus, Winfried and Metzger, Marco and Vogel, J{\"o}rg and Westermann, Alexander J. and Saliba, Antoine-Emmanuel and Zdzieblo, Daniela}, title = {A primary cell-based in vitro model of the human small intestine reveals host olfactomedin 4 induction in response to Salmonella Typhimurium infection}, series = {Gut Microbes}, volume = {15}, journal = {Gut Microbes}, number = {1}, doi = {10.1080/19490976.2023.2186109}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350451}, year = {2023}, abstract = {Infection research largely relies on classical cell culture or mouse models. Despite having delivered invaluable insights into host-pathogen interactions, both have limitations in translating mechanistic principles to human pathologies. Alternatives can be derived from modern Tissue Engineering approaches, allowing the reconstruction of functional tissue models in vitro. Here, we combined a biological extracellular matrix with primary tissue-derived enteroids to establish an in vitro model of the human small intestinal epithelium exhibiting in vivo-like characteristics. Using the foodborne pathogen Salmonella enterica serovar Typhimurium, we demonstrated the applicability of our model to enteric infection research in the human context. Infection assays coupled to spatio-temporal readouts recapitulated the established key steps of epithelial infection by this pathogen in our model. Besides, we detected the upregulation of olfactomedin 4 in infected cells, a hitherto unrecognized aspect of the host response to Salmonella infection. Together, this primary human small intestinal tissue model fills the gap between simplistic cell culture and animal models of infection, and shall prove valuable in uncovering human-specific features of host-pathogen interplay.}, language = {en} } @article{RamirezZavalaKruegerWollneretal.2023, author = {Ram{\´i}rez-Zavala, Bernardo and Kr{\"u}ger, Ines and Wollner, Andreas and Schwanfelder, Sonja and Morschh{\"a}user, Joachim}, title = {The Ypk1 protein kinase signaling pathway is rewired and not essential for viability in \(Candida\) \(albicans\)}, series = {PLoS Genetics}, volume = {19}, journal = {PLoS Genetics}, number = {8}, doi = {10.1371/journal.pgen.1010890}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350076}, year = {2023}, abstract = {Abstract Protein kinases are central components of almost all signaling pathways that control cellular activities. In the model organism Saccharomyces cerevisiae, the paralogous protein kinases Ypk1 and Ypk2, which control membrane lipid homeostasis, are essential for viability, and previous studies strongly indicated that this is also the case for their single ortholog Ypk1 in the pathogenic yeast Candida albicans. Here, using FLP-mediated inducible gene deletion, we reveal that C. albicans ypk1Δ mutants are viable but slow-growing, explaining prior failures to obtain null mutants. Phenotypic analyses of the mutants showed that the functions of Ypk1 in regulating sphingolipid biosynthesis and cell membrane lipid asymmetry are conserved, but the consequences of YPK1 deletion are milder than in S. cerevisiae. Mutational studies demonstrated that the highly conserved PDK1 phosphorylation site T548 in its activation loop is essential for Ypk1 function, whereas the TORC2 phosphorylation sites S687 and T705 at the C-terminus are important for Ypk1-dependent resistance to membrane stress. Unexpectedly, Pkh1, the single C. albicans orthologue of Pkh1/Pkh2, which mediate Ypk1 phosphorylation at the PDK1 site in S. cerevisiae, was not required for normal growth of C. albicans under nonstressed conditions, and Ypk1 phosphorylation at T548 was only slightly reduced in pkh1Δ mutants. We found that another protein kinase, Pkh3, whose ortholog in S. cerevisiae cannot substitute Pkh1/2, acts redundantly with Pkh1 to activate Ypk1 in C. albicans. No phenotypic effects were observed in cells lacking Pkh3 alone, but pkh1Δ pkh3Δ double mutants had a severe growth defect and Ypk1 phosphorylation at T548 was completely abolished. These results establish that Ypk1 is not essential for viability in C. albicans and that, despite its generally conserved function, the Ypk1 signaling pathway is rewired in this pathogenic yeast and includes a novel upstream kinase to activate Ypk1 by phosphorylation at the PDK1 site. Author summary Protein kinases are key components of cellular signaling pathways, and elucidating the specific roles of individual kinases is important to understand how organisms adapt to changes in their environment. The protein kinase Ypk1 is highly conserved in eukaryotic organisms and crucial for the maintenance of cell membrane homeostasis. It was previously thought that Ypk1 is essential for viability in the pathogenic yeast Candida albicans, as in the model organism Saccharomyces cerevisiae. Here, by using forced, inducible gene deletion, we reveal that C. albicans mutants lacking Ypk1 are viable but have a strong growth defect. The phenotypes of the mutants indicate that the known functions of Ypk1 are conserved in C. albicans, but loss of this kinase has less severe consequences than in S. cerevisiae. We also unravel the puzzling previous observation that C. albicans mutants lacking the Ypk1-activating kinase Pkh1, which is essential in S. cerevisiae, have no obvious growth defects. We show that the protein kinase Pkh3, which has not previously been implicated in the Ypk1 signaling pathway, can substitute Pkh1 and activate Ypk1 in C. albicans. These findings provide novel insights into this conserved signaling pathway and how it is rewired in a human-pathogenic fungus.}, language = {en} } @article{HombergerHaywardBarquistetal.2023, author = {Homberger, Christina and Hayward, Regan J. and Barquist, Lars and Vogel, J{\"o}rg}, title = {Improved bacterial single-cell RNA-seq through automated MATQ-seq and Cas9-based removal of rRNA reads}, series = {mBio}, volume = {14}, journal = {mBio}, number = {2}, doi = {10.1128/mbio.03557-22}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350059}, year = {2023}, abstract = {Bulk RNA sequencing technologies have provided invaluable insights into host and bacterial gene expression and associated regulatory networks. Nevertheless, the majority of these approaches report average expression across cell populations, hiding the true underlying expression patterns that are often heterogeneous in nature. Due to technical advances, single-cell transcriptomics in bacteria has recently become reality, allowing exploration of these heterogeneous populations, which are often the result of environmental changes and stressors. In this work, we have improved our previously published bacterial single-cell RNA sequencing (scRNA-seq) protocol that is based on multiple annealing and deoxycytidine (dC) tailing-based quantitative scRNA-seq (MATQ-seq), achieving a higher throughput through the integration of automation. We also selected a more efficient reverse transcriptase, which led to reduced cell loss and higher workflow robustness. Moreover, we successfully implemented a Cas9-based rRNA depletion protocol into the MATQ-seq workflow. Applying our improved protocol on a large set of single Salmonella cells sampled over different growth conditions revealed improved gene coverage and a higher gene detection limit compared to our original protocol and allowed us to detect the expression of small regulatory RNAs, such as GcvB or CsrB at a single-cell level. In addition, we confirmed previously described phenotypic heterogeneity in Salmonella in regard to expression of pathogenicity-associated genes. Overall, the low percentage of cell loss and high gene detection limit makes the improved MATQ-seq protocol particularly well suited for studies with limited input material, such as analysis of small bacterial populations in host niches or intracellular bacteria. IMPORTANCE: Gene expression heterogeneity among isogenic bacteria is linked to clinically relevant scenarios, like biofilm formation and antibiotic tolerance. The recent development of bacterial single-cell RNA sequencing (scRNA-seq) enables the study of cell-to-cell variability in bacterial populations and the mechanisms underlying these phenomena. Here, we report a scRNA-seq workflow based on MATQ-seq with increased robustness, reduced cell loss, and improved transcript capture rate and gene coverage. Use of a more efficient reverse transcriptase and the integration of an rRNA depletion step, which can be adapted to other bacterial single-cell workflows, was instrumental for these improvements. Applying the protocol to the foodborne pathogen Salmonella, we confirmed transcriptional heterogeneity across and within different growth phases and demonstrated that our workflow captures small regulatory RNAs at a single-cell level. Due to low cell loss and high transcript capture rates, this protocol is uniquely suited for experimental settings in which the starting material is limited, such as infected tissues.}, language = {en} } @article{PrezzaRyanMaedleretal.2022, author = {Prezza, Gianluca and Ryan, Daniel and M{\"a}dler, Gohar and Reichardt, Sarah and Barquist, Lars and Westermann, Alexander J.}, title = {Comparative genomics provides structural and functional insights into Bacteroides RNA biology}, series = {Molecular Microbiology}, volume = {117}, journal = {Molecular Microbiology}, number = {1}, doi = {10.1111/mmi.14793}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259594}, pages = {67-85}, year = {2022}, abstract = {Bacteria employ noncoding RNA molecules for a wide range of biological processes, including scaffolding large molecular complexes, catalyzing chemical reactions, defending against phages, and controlling gene expression. Secondary structures, binding partners, and molecular mechanisms have been determined for numerous small noncoding RNAs (sRNAs) in model aerobic bacteria. However, technical hurdles have largely prevented analogous analyses in the anaerobic gut microbiota. While experimental techniques are being developed to investigate the sRNAs of gut commensals, computational tools and comparative genomics can provide immediate functional insight. Here, using Bacteroides thetaiotaomicron as a representative microbiota member, we illustrate how comparative genomics improves our understanding of RNA biology in an understudied gut bacterium. We investigate putative RNA-binding proteins and predict a Bacteroides cold-shock protein homolog to have an RNA-related function. We apply an in silico protocol incorporating both sequence and structural analysis to determine the consensus structures and conservation of nine Bacteroides noncoding RNA families. Using structure probing, we validate and refine these predictions and deposit them in the Rfam database. Through synteny analyses, we illustrate how genomic coconservation can serve as a predictor of sRNA function. Altogether, this work showcases the power of RNA informatics for investigating the RNA biology of anaerobic microbiota members.}, language = {en} } @article{SvenssonSharma2022, author = {Svensson, Sarah L. and Sharma, Cynthia M.}, title = {Small RNAs that target G-rich sequences are generated by diverse biogenesis pathways in Epsilonproteobacteria}, series = {Molecular Microbiology}, volume = {117}, journal = {Molecular Microbiology}, doi = {10.1111/mmi.14850}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259602}, pages = {215-233}, year = {2022}, abstract = {Bacterial small RNAs (sRNAs) are widespread post-transcriptional regulators that control bacterial stress responses and virulence. Nevertheless, little is known about how they arise and evolve. Homologs can be difficult to identify beyond the strain level using sequence-based approaches, and similar functionalities can arise by convergent evolution. Here, we found that the virulence-associated CJnc190 sRNA of the foodborne pathogen Campylobacter jejuni resembles the RepG sRNA from the gastric pathogen Helicobacter pylori. However, while both sRNAs bind G-rich sites in their target mRNAs using a C/U-rich loop, they largely differ in their biogenesis. RepG is transcribed from a stand-alone gene and does not require processing, whereas CJnc190 is transcribed from two promoters as precursors that are processed by RNase III and also has a cis-encoded antagonist, CJnc180. By comparing CJnc190 homologs in diverse Campylobacter species, we show that RNase III-dependent processing of CJnc190 appears to be a conserved feature even outside of C. jejuni. We also demonstrate the CJnc180 antisense partner is expressed in C. coli, yet here might be derived from the 3'UTR (untranslated region) of an upstream flagella-related gene. Our analysis of G-tract targeting sRNAs in Epsilonproteobacteria demonstrates that similar sRNAs can have markedly different biogenesis pathways.}, language = {en} } @article{RamirezZavalaKruegerDunkeretal.2022, author = {Ram{\´i}rez-Zavala, Bernardo and Kr{\"u}ger, Ines and Dunker, Christine and Jacobsen, Ilse D. and Morschh{\"a}user, Joachim}, title = {The protein kinase Ire1 has a Hac1-independent essential role in iron uptake and virulence of Candida albicans}, series = {PLoS Pathogens}, volume = {18}, journal = {PLoS Pathogens}, number = {2}, doi = {10.1371/journal.ppat.1010283}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300225}, year = {2022}, abstract = {Protein kinases play central roles in virtually all signaling pathways that enable organisms to adapt to their environment. Microbial pathogens must cope with severely restricted iron availability in mammalian hosts to invade and establish themselves within infected tissues. To uncover protein kinase signaling pathways that are involved in the adaptation of the pathogenic yeast Candida albicans to iron limitation, we generated a comprehensive protein kinase deletion mutant library of a wild-type strain. Screening of this library revealed that the protein kinase Ire1, which has a conserved role in the response of eukaryotic cells to endoplasmic reticulum stress, is essential for growth of C. albicans under iron-limiting conditions. Ire1 was not necessary for the activity of the transcription factor Sef1, which regulates the response of the fungus to iron limitation, and Sef1 target genes that are induced by iron depletion were normally upregulated in ire1Δ mutants. Instead, Ire1 was required for proper localization of the high-affinity iron permease Ftr1 to the cell membrane. Intriguingly, iron limitation did not cause increased endoplasmic reticulum stress, and the transcription factor Hac1, which is activated by Ire1-mediated removal of the non-canonical intron in the HAC1 mRNA, was dispensable for Ftr1 localization to the cell membrane and growth under iron-limiting conditions. Nevertheless, expression of a pre-spliced HAC1 copy in ire1Δ mutants restored Ftr1 localization and rescued the growth defects of the mutants. Both ire1Δ and hac1Δ mutants were avirulent in a mouse model of systemic candidiasis, indicating that an appropriate response to endoplasmic reticulum stress is important for the virulence of C. albicans. However, the specific requirement of Ire1 for the functionality of the high-affinity iron permease Ftr1, a well-established virulence factor, even in the absence of endoplasmic reticulum stress uncovers a novel Hac1-independent essential role of Ire1 in iron acquisition and virulence of C. albicans.}, language = {en} } @article{UmstaetterWernerZerlinetal.2022, author = {Umst{\"a}tter, Florian and Werner, Julia and Zerlin, Leah and M{\"u}hlberg, Eric and Kleist, Christian and Klika, Karel D. and Hertlein, Tobias and Beijer, Barbro and Domhan, Cornelius and Zimmermann, Stefan and Ohlsen, Knut and Haberkorn, Uwe and Mier, Walter and Uhl, Philipp}, title = {Impact of linker modification and PEGylation of vancomycin conjugates on structure-activity relationships and pharmacokinetics}, series = {Pharmaceuticals}, volume = {15}, journal = {Pharmaceuticals}, number = {2}, issn = {1424-8247}, doi = {10.3390/ph15020159}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-255197}, year = {2022}, abstract = {As multidrug-resistant bacteria represent a concerning burden, experts insist on the need for a dramatic rethinking on antibiotic use and development in order to avoid a post-antibiotic era. New and rapidly developable strategies for antimicrobial substances, in particular substances highly potent against multidrug-resistant bacteria, are urgently required. Some of the treatment options currently available for multidrug-resistant bacteria are considerably limited by side effects and unfavorable pharmacokinetics. The glycopeptide vancomycin is considered an antibiotic of last resort. Its use is challenged by bacterial strains exhibiting various types of resistance. Therefore, in this study, highly active polycationic peptide-vancomycin conjugates with varying linker characteristics or the addition of PEG moieties were synthesized to optimize pharmacokinetics while retaining or even increasing antimicrobial activity in comparison to vancomycin. The antimicrobial activity of the novel conjugates was determined by microdilution assays on susceptible and vancomycin-resistant bacterial strains. VAN1 and VAN2, the most promising linker-modified derivatives, were further characterized in vivo with molecular imaging and biodistribution studies in rodents, showing that the linker moiety influences both antimicrobial activity and pharmacokinetics. Encouragingly, VAN2 was able to undercut the resistance breakpoint in microdilution assays on vanB and vanC vancomycin-resistant enterococci. Out of all PEGylated derivatives, VAN:PEG1 and VAN:PEG3 were able to overcome vanC resistance. Biodistribution studies of the novel derivatives revealed significant changes in pharmacokinetics when compared with vancomycin. In conclusion, linker modification of vancomycin-polycationic peptide conjugates represents a promising strategy for the modulation of pharmacokinetic behavior while providing potent antimicrobial activity.}, language = {en} } @article{IbrahimOhlsen2022, author = {Ibrahim, Eslam S. and Ohlsen, Knut}, title = {The old yellow enzyme OfrA fosters Staphylococcus aureus survival via affecting thiol-dependent redox homeostasis}, series = {Frontiers in Microbiology}, volume = {13}, journal = {Frontiers in Microbiology}, issn = {1664-302X}, doi = {10.3389/fmicb.2022.888140}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-274381}, year = {2022}, abstract = {Old yellow enzymes (OYEs) are widely found in the bacterial, fungal, and plant kingdoms but absent in humans and have been used as biocatalysts for decades. However, OYEs' physiological function in bacterial stress response and infection situations remained enigmatic. As a pathogen, the Gram-positive bacterium Staphylococcus aureus adapts to numerous stress conditions during pathogenesis. Here, we show that in S. aureus genome, two paralogous genes (ofrA and ofrB) encode for two OYEs. We conducted a bioinformatic analysis and found that ofrA is conserved among all publicly available representative staphylococcal genomes and some Firmicutes. Expression of ofrA is induced by electrophilic, oxidative, and hypochlorite stress in S. aureus. Furthermore, ofrA contributes to S. aureus survival against reactive electrophilic, oxygen, and chlorine species (RES, ROS, and RCS) via thiol-dependent redox homeostasis. At the host-pathogen interface, S. aureusΔofrA has defective survival in macrophages and whole human blood and decreased staphyloxanthin production. Overall, our results shed the light onto a novel stress response strategy in the important human pathogen S. aureus.}, language = {en} } @article{HungDreherDiessneretal.2022, author = {Hung, Sophia and Dreher, Liane and Diessner, Joachim and Schwarz, Stefan and Ohlsen, Knut and Hertlein, Tobias}, title = {MRSA infection in the thigh muscle leads to systemic disease, strong inflammation, and loss of human monocytes in humanized mice}, series = {Frontiers in Immunology}, volume = {13}, journal = {Frontiers in Immunology}, issn = {1664-3224}, doi = {10.3389/fimmu.2022.892053}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-278050}, year = {2022}, abstract = {MRSA (Methicillin-resistant Staphylococcus aureus) is the second-leading cause of deaths by antibiotic-resistant bacteria globally, with more than 100,000 attributable deaths annually. Despite the high urgency to develop a vaccine to control this pathogen, all clinical trials with pre-clinically effective candidates failed so far. The recent development of "humanized" mice might help to edge the pre-clinical evaluation closer to the clinical situation and thus close this gap. We infected humanized NSG mice (huNSG: (NOD)-scid IL2R\(_γ\)\(^{null}\) mice engrafted with human CD34+ hematopoietic stem cells) locally with S. aureus USA300 LAC* lux into the thigh muscle in order to investigate the human immune response to acute and chronic infection. These mice proved not only to be more susceptible to MRSA infection than wild-type or "murinized" mice, but displayed furthermore inferior survival and signs of systemic infection in an otherwise localized infection model. The rate of humanization correlated directly with the severity of disease and survival of the mice. Human and murine cytokine levels in blood and at the primary site of infection were strongly elevated in huNSG mice compared to all control groups. And importantly, differences in human and murine immune cell lineages surfaced during the infection, with human monocyte and B cell numbers in blood and bone marrow being significantly reduced at the later time point of infection. Murine monocytes in contrast behaved conversely by increasing cell numbers. This study demonstrates significant differences in the in vivo behavior of human and murine cells towards S. aureus infection, which might help to sharpen the translational potential of pre-clinical models for future therapeutic approaches.}, language = {en} } @article{MetznerHerzogHeckeletal.2022, author = {Metzner, Valentin and Herzog, Gloria and Heckel, Tobias and Bischler, Thorsten and Hasinger, Julia and Otto, Christoph and Fassnacht, Martin and Geier, Andreas and Seyfried, Florian and Dischinger, Ulrich}, title = {Liraglutide + PYY\(_{3-36}\) combination therapy mimics effects of Roux-en-Y bypass on early NAFLD whilst lacking-behind in metabolic improvements}, series = {Journal of Clinical Medicine}, volume = {11}, journal = {Journal of Clinical Medicine}, number = {3}, issn = {2077-0383}, doi = {10.3390/jcm11030753}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-255244}, year = {2022}, abstract = {Background: Treatment options for NAFLD are still limited. Bariatric surgery, such as Roux-en-Y gastric bypass (RYGB), has been shown to improve metabolic and histologic markers of NAFLD. Glucagon-like-peptide-1 (GLP-1) analogues lead to improvements in phase 2 clinical trials. We directly compared the effects of RYGB with a treatment using liraglutide and/or peptide tyrosine tyrosine 3-36 (PYY\(_{3-36}\)) in a rat model for early NAFLD. Methods: Obese male Wistar rats (high-fat diet (HFD)-induced) were randomized into the following treatment groups: RYGB, sham-operation (sham), liraglutide (0.4 mg/kg/day), PYY\(_{3-36}\) (0.1 mg/kg/day), liraglutide+PYY\(_{3-36}\), and saline. After an observation period of 4 weeks, liver samples were histologically evaluated, ELISAs and RNA sequencing + RT-qPCRs were performed. Results: RYGB and liraglutide+PYY\(_{3-36}\) induced a similar body weight loss and, compared to sham/saline, marked histological improvements with significantly less steatosis. However, only RYGB induced significant metabolic improvements (e.g., adiponectin/leptin ratio 18.8 ± 11.8 vs. 2.4 ± 1.2 in liraglutide+PYY\(_{3-36}\)- or 1.4 ± 0.9 in sham-treated rats). Furthermore, RNA sequencing revealed a high number of differentially regulated genes in RYGB treated animals only. Conclusions: The combination therapy of liraglutide+PYY\(_{3-36}\) partly mimics the positive effects of RYGB on weight reduction and on hepatic steatosis, while its effects on metabolic function lack behind RYGB.}, language = {en} } @article{HombergerBarquistVogel2022, author = {Homberger, Christina and Barquist, Lars and Vogel, J{\"o}rg}, title = {Ushering in a new era of single-cell transcriptomics in bacteria}, series = {microLife}, volume = {3}, journal = {microLife}, doi = {10.1093/femsml/uqac020}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-313292}, year = {2022}, abstract = {Transcriptome analysis of individual cells by single-cell RNA-seq (scRNA-seq) has become routine for eukaryotic tissues, even being applied to whole multicellular organisms. In contrast, developing methods to read the transcriptome of single bacterial cells has proven more challenging, despite a general perception of bacteria as much simpler than eukaryotes. Bacterial cells are harder to lyse, their RNA content is about two orders of magnitude lower than that of eukaryotic cells, and bacterial mRNAs are less stable than their eukaryotic counterparts. Most importantly, bacterial transcripts lack functional poly(A) tails, precluding simple adaptation of popular standard eukaryotic scRNA-seq protocols that come with the double advantage of specific mRNA amplification and concomitant depletion of rRNA. However, thanks to very recent breakthroughs in methodology, bacterial scRNA-seq is now feasible. This short review will discuss recently published bacterial scRNA-seq approaches (MATQ-seq, microSPLiT, and PETRI-seq) and a spatial transcriptomics approach based on multiplexed in situ hybridization (par-seqFISH). Together, these novel approaches will not only enable a new understanding of cell-to-cell variation in bacterial gene expression, they also promise a new microbiology by enabling high-resolution profiling of gene activity in complex microbial consortia such as the microbiome or pathogens as they invade, replicate, and persist in host tissue.}, language = {en} } @article{MasotaOhlsenSchollmayeretal.2022, author = {Masota, Nelson E. and Ohlsen, Knut and Schollmayer, Curd and Meinel, Lorenz and Holzgrabe, Ulrike}, title = {Isolation and characterization of galloylglucoses effective against multidrug-resistant strains of Escherichia coli and Klebsiella pneumoniae}, series = {Molecules}, volume = {27}, journal = {Molecules}, number = {15}, issn = {1420-3049}, doi = {10.3390/molecules27155045}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-286179}, year = {2022}, abstract = {The search for new antibiotics against multidrug-resistant (MDR), Gram-negative bacteria is crucial with respect to filling the antibiotics development pipeline, which is subject to a critical shortage of novel molecules. Screening of natural products is a promising approach for identifying antimicrobial compounds hosting a higher degree of novelty. Here, we report the isolation and characterization of four galloylglucoses active against different MDR strains of Escherichia coli and Klebsiella pneumoniae. A crude acetone extract was prepared from Paeonia officinalis Linnaeus leaves, and bioautography-guided isolation of active compounds from the extract was performed by liquid-liquid extraction, as well as open column, flash, and preparative chromatographic methods. Isolated active compounds were characterized and elucidated by a combination of spectroscopic and spectrometric techniques. In vitro antimicrobial susceptibility testing was carried out on E. coli and K. pneumoniae using 2 reference strains and 13 strains hosting a wide range of MDR phenotypes. Furthermore, in vivo antibacterial activities were assessed using Galleria mellonella larvae, and compounds 1,2,3,4,6-penta-O-galloyl-β-d-glucose, 3-O-digalloyl-1,2,4,6-tetra-O-galloyl-β-d-glucose, 6-O-digalloyl-1,2,3,4-tetra-O-galloyl-β-d-glucose, and 3,6-bis-O-digalloyl-1,2,4-tri-O-galloyl-β-d-glucose were isolated and characterized. They showed minimum inhibitory concentration (MIC) values in the range of 2-256 µg/mL across tested bacterial strains. These findings have added to the number of known galloylglucoses from P. officinalis and highlight their potential against MDR Gram-negative bacteria.}, language = {en} } @article{GuptaMinochaThapaetal.2022, author = {Gupta, Shishir K. and Minocha, Rashmi and Thapa, Prithivi Jung and Srivastava, Mugdha and Dandekar, Thomas}, title = {Role of the pangolin in origin of SARS-CoV-2: an evolutionary perspective}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {16}, issn = {1422-0067}, doi = {10.3390/ijms23169115}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-285995}, year = {2022}, abstract = {After the recent emergence of SARS-CoV-2 infection, unanswered questions remain related to its evolutionary history, path of transmission or divergence and role of recombination. There is emerging evidence on amino acid substitutions occurring in key residues of the receptor-binding domain of the spike glycoprotein in coronavirus isolates from bat and pangolins. In this article, we summarize our current knowledge on the origin of SARS-CoV-2. We also analyze the host ACE2-interacting residues of the receptor-binding domain of spike glycoprotein in SARS-CoV-2 isolates from bats, and compare it to pangolin SARS-CoV-2 isolates collected from Guangdong province (GD Pangolin-CoV) and Guangxi autonomous regions (GX Pangolin-CoV) of South China. Based on our comparative analysis, we support the view that the Guangdong Pangolins are the intermediate hosts that adapted the SARS-CoV-2 and represented a significant evolutionary link in the path of transmission of SARS-CoV-2 virus. We also discuss the role of intermediate hosts in the origin of Omicron.}, language = {en} } @article{SeethalerHertleinHopkeetal.2022, author = {Seethaler, Marius and Hertlein, Tobias and Hopke, Elisa and K{\"o}hling, Paul and Ohlsen, Knut and Lalk, Michael and Hilgeroth, Andreas}, title = {Novel effective fluorinated benzothiophene-indole hybrid antibacterials against S. aureus and MRSA strains}, series = {Pharmaceuticals}, volume = {15}, journal = {Pharmaceuticals}, number = {9}, issn = {1424-8247}, doi = {10.3390/ph15091138}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-288253}, year = {2022}, abstract = {Increasing antibacterial drug resistance threatens global health, unfortunately, however, efforts to find novel antibacterial agents have been scaled back by the pharmaceutical industry due to concerns about a poor return on investment. Nevertheless, there is an urgent need to find novel antibacterial compounds to combat antibacterial drug resistance. The synthesis of novel drugs from natural sources is mostly cost-intensive due to those drugs' complicated structures. Therefore, it is necessary to find novel antibacterials by simple synthesis to become more attractive for industrial production. We succeeded in the discovery of four antibacterial compound (sub)classes accessible in a simple one-pot reaction based on fluorinated benzothiophene-indole hybrids. They have been evaluated against various S. aureus and MRSA strains. Structure- and substituent-dependent activities have been found within the (sub)classes and promising lead compounds have been identified. In addition, bacterial pyruvate kinase was found to be the molecular target of the active compounds. In conclusion, simple one-pot synthesis of benzothiophene-indoles represents a promising strategy for the search of novel antimicrobial compounds.}, language = {en} } @article{ElMoualiGerovacMineikaitėetal.2021, author = {El Mouali, Youssef and Gerovac, Milan and Mineikaitė, Raminta and Vogel, J{\"o}rg}, title = {In vivo targets of Salmonella FinO include a FinP-like small RNA controlling copy number of a cohabitating plasmid}, series = {Nucleic Acids Research}, volume = {49}, journal = {Nucleic Acids Research}, number = {9}, doi = {10.1093/nar/gkab281}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-261072}, pages = {5319-5335}, year = {2021}, abstract = {FinO-domain proteins represent an emerging family of RNA-binding proteins (RBPs) with diverse roles in bacterial post-transcriptional control and physiology. They exhibit an intriguing targeting spectrum, ranging from an assumed single RNA pair (FinP/traJ) for the plasmid-encoded FinO protein, to transcriptome-wide activity as documented for chromosomally encoded ProQ proteins. Thus, the shared FinO domain might bear an unusual plasticity enabling it to act either selectively or promiscuously on the same cellular RNA pool. One caveat to this model is that the full suite of in vivo targets of the assumedly highly selective FinO protein is unknown. Here, we have extensively profiled cellular transcripts associated with the virulence plasmid-encoded FinO in Salmonella enterica. While our analysis confirms the FinP sRNA of plasmid pSLT as the primary FinO target, we identify a second major ligand: the RepX sRNA of the unrelated antibiotic resistance plasmid pRSF1010. FinP and RepX are strikingly similar in length and structure, but not in primary sequence, and so may provide clues to understanding the high selectivity of FinO-RNA interactions. Moreover, we observe that the FinO RBP encoded on the Salmonella virulence plasmid controls the replication of a cohabitating antibiotic resistance plasmid, suggesting cross-regulation of plasmids on the RNA level.}, language = {en} } @article{GuptaSrivastavaMinochaetal.2021, author = {Gupta, Shishir K. and Srivastava, Mugdha and Minocha, Rashmi and Akash, Aman and Dangwal, Seema and Dandekar, Thomas}, title = {Alveolar regeneration in COVID-19 patients: a network perspective}, series = {International Journal of Molecular Sciences}, volume = {22}, journal = {International Journal of Molecular Sciences}, number = {20}, issn = {1422-0067}, doi = {10.3390/ijms222011279}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284307}, year = {2021}, abstract = {A viral infection involves entry and replication of viral nucleic acid in a host organism, subsequently leading to biochemical and structural alterations in the host cell. In the case of SARS-CoV-2 viral infection, over-activation of the host immune system may lead to lung damage. Albeit the regeneration and fibrotic repair processes being the two protective host responses, prolonged injury may lead to excessive fibrosis, a pathological state that can result in lung collapse. In this review, we discuss regeneration and fibrosis processes in response to SARS-CoV-2 and provide our viewpoint on the triggering of alveolar regeneration in coronavirus disease 2019 (COVID-19) patients.}, language = {en} } @article{KayisogluSchlegelBartfeld2021, author = {Kayisoglu, {\"O}zge and Schlegel, Nicolas and Bartfeld, Sina}, title = {Gastrointestinal epithelial innate immunity-regionalization and organoids as new model}, series = {Journal of Molecular Medicine}, volume = {99}, journal = {Journal of Molecular Medicine}, number = {4}, doi = {10.1007/s00109-021-02043-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-265220}, pages = {517-530}, year = {2021}, abstract = {The human gastrointestinal tract is in constant contact with microbial stimuli. Its barriers have to ensure co-existence with the commensal bacteria, while enabling surveillance of intruding pathogens. At the centre of the interaction lies the epithelial layer, which marks the boundaries of the body. It is equipped with a multitude of different innate immune sensors, such as Toll-like receptors, to mount inflammatory responses to microbes. Dysfunction of this intricate system results in inflammation-associated pathologies, such as inflammatory bowel disease. However, the complexity of the cellular interactions, their molecular basis and their development remains poorly understood. In recent years, stem cell-derived organoids have gained increasing attention as promising models for both development and a broad range of pathologies, including infectious diseases. In addition, organoids enable the study of epithelial innate immunity in vitro. In this review, we focus on the gastrointestinal epithelial barrier and its regional organization to discuss innate immune sensing and development.}, language = {en} } @article{MarincolaLiongSchoenetal.2021, author = {Marincola, Gabriella and Liong, Olivia and Schoen, Christoph and Abouelfetouh, Alaa and Hamdy, Aisha and Wencker, Freya D. R. and Marciniak, Tessa and Becker, Karsten and K{\"o}ck, Robin and Ziebuhr, Wilma}, title = {Antimicrobial Resistance Profiles of Coagulase-Negative Staphylococci in Community-Based Healthy Individuals in Germany}, series = {Frontiers in Public Health}, volume = {9}, journal = {Frontiers in Public Health}, issn = {2296-2565}, doi = {10.3389/fpubh.2021.684456}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-240881}, year = {2021}, abstract = {Coagulase-negative staphylococci (CoNS) are common opportunistic pathogens, but also ubiquitous human and animal commensals. Infection-associated CoNS from healthcare environments are typically characterized by pronounced antimicrobial resistance (AMR) including both methicillin- and multidrug-resistant isolates. Less is known about AMR patterns of CoNS colonizing the general population. Here we report on AMR in commensal CoNS recovered from 117 non-hospitalized volunteers in a region of Germany with a high livestock density. Among the 69 individuals colonized with CoNS, 29 had reported contacts to either companion or farm animals. CoNS were selectively cultivated from nasal swabs, followed by species definition by 16S rDNA sequencing and routine antibiotic susceptibility testing. Isolates displaying phenotypic AMR were further tested by PCR for presence of selected AMR genes. A total of 127 CoNS were isolated and Staphylococcus epidermidis (75\%) was the most common CoNS species identified. Nine isolates (7\%) were methicillin-resistant (MR) and carried the mecA gene, with seven individuals (10\%) being colonized with at least one MR-CoNS isolate. While resistance against gentamicin, phenicols and spectinomycin was rare, high resistance rates were found against tetracycline (39\%), erythromycin (33\%) and fusidic acid (24\%). In the majority of isolates, phenotypic resistance could be associated with corresponding AMR gene detection. Multidrug-resistance (MDR) was observed in 23\% (29/127) of the isolates, with 33\% (23/69) of the individuals being colonized with MDR-CoNS. The combined data suggest that MR- and MDR-CoNS are present in the community, with previous animal contact not significantly influencing the risk of becoming colonized with such isolates.}, language = {en} } @article{LiangRiosMiguelJaricketal.2021, author = {Liang, Chunguang and Rios-Miguel, Ana B. and Jarick, Marcel and Neurgaonkar, Priya and Girard, Myriam and Fran{\c{c}}ois, Patrice and Schrenzel, Jacques and Ibrahim, Eslam S. and Ohlsen, Knut and Dandekar, Thomas}, title = {Staphylococcus aureus transcriptome data and metabolic modelling investigate the interplay of Ser/Thr kinase PknB, its phosphatase Stp, the glmR/yvcK regulon and the cdaA operon for metabolic adaptation}, series = {Microorganisms}, volume = {9}, journal = {Microorganisms}, number = {10}, issn = {2076-2607}, doi = {10.3390/microorganisms9102148}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-248459}, year = {2021}, abstract = {Serine/threonine kinase PknB and its corresponding phosphatase Stp are important regulators of many cell functions in the pathogen S. aureus. Genome-scale gene expression data of S. aureus strain NewHG (sigB\(^+\)) elucidated their effect on physiological functions. Moreover, metabolic modelling from these data inferred metabolic adaptations. We compared wild-type to deletion strains lacking pknB, stp or both. Ser/Thr phosphorylation of target proteins by PknB switched amino acid catabolism off and gluconeogenesis on to provide the cell with sufficient components. We revealed a significant impact of PknB and Stp on peptidoglycan, nucleotide and aromatic amino acid synthesis, as well as catabolism involving aspartate transaminase. Moreover, pyrimidine synthesis was dramatically impaired by stp deletion but only slightly by functional loss of PknB. In double knockouts, higher activity concerned genes involved in peptidoglycan, purine and aromatic amino acid synthesis from glucose but lower activity of pyrimidine synthesis from glucose compared to the wild type. A second transcriptome dataset from S. aureus NCTC 8325 (sigB\(^-\)) validated the predictions. For this metabolic adaptation, PknB was found to interact with CdaA and the yvcK/glmR regulon. The involved GlmR structure and the GlmS riboswitch were modelled. Furthermore, PknB phosphorylation lowered the expression of many virulence factors, and the study shed light on S. aureus infection processes.}, language = {en} } @article{GuptaSrivastavaOsmanogluetal.2021, author = {Gupta, Shishir K. and Srivastava, Mugdha and Osmanoglu, {\"O}zge and Xu, Zhuofei and Brakhage, Axel A. and Dandekar, Thomas}, title = {Aspergillus fumigatus versus genus Aspergillus: conservation, adaptive evolution and specific virulence genes}, series = {Microorganisms}, volume = {9}, journal = {Microorganisms}, number = {10}, issn = {2076-2607}, doi = {10.3390/microorganisms9102014}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-246318}, year = {2021}, abstract = {Aspergillus is an important fungal genus containing economically important species, as well as pathogenic species of animals and plants. Using eighteen fungal species of the genus Aspergillus, we conducted a comprehensive investigation of conserved genes and their evolution. This also allows us to investigate the selection pressure driving the adaptive evolution in the pathogenic species A. fumigatus. Among single-copy orthologs (SCOs) for A. fumigatus and the closely related species A. fischeri, we identified 122 versus 50 positively selected genes (PSGs), respectively. Moreover, twenty conserved genes of unknown function were established to be positively selected and thus important for adaption. A. fumigatus PSGs interacting with human host proteins show over-representation of adaptive, symbiosis-related, immunomodulatory and virulence-related pathways, such as the TGF-β pathway, insulin receptor signaling, IL1 pathway and interfering with phagosomal GTPase signaling. Additionally, among the virulence factor coding genes, secretory and membrane protein-coding genes in multi-copy gene families, 212 genes underwent positive selection and also suggest increased adaptation, such as fungal immune evasion mechanisms (aspf2), siderophore biosynthesis (sidD), fumarylalanine production (sidE), stress tolerance (atfA) and thermotolerance (sodA). These genes presumably contribute to host adaptation strategies. Genes for the biosynthesis of gliotoxin are shared among all the close relatives of A. fumigatus as an ancient defense mechanism. Positive selection plays a crucial role in the adaptive evolution of A. fumigatus. The genome-wide profile of PSGs provides valuable targets for further research on the mechanisms of immune evasion, antimycotic targeting and understanding fundamental virulence processes.}, language = {en} } @article{DischingerHeckelBischleretal.2021, author = {Dischinger, Ulrich and Heckel, Tobias and Bischler, Thorsten and Hasinger, Julia and K{\"o}nigsrainer, Malina and Schmitt-B{\"o}hrer, Angelika and Otto, Christoph and Fassnacht, Martin and Seyfried, Florian and Hankir, Mohammed Khair}, title = {Roux-en-Y gastric bypass and caloric restriction but not gut hormone-based treatments profoundly impact the hypothalamic transcriptome in obese rats}, series = {Nutrients}, volume = {14}, journal = {Nutrients}, number = {1}, issn = {2072-6643}, doi = {10.3390/nu14010116}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-252392}, year = {2021}, abstract = {Background: The hypothalamus is an important brain region for the regulation of energy balance. Roux-en-Y gastric bypass (RYGB) surgery and gut hormone-based treatments are known to reduce body weight, but their effects on hypothalamic gene expression and signaling pathways are poorly studied. Methods: Diet-induced obese male Wistar rats were randomized into the following groups: RYGB, sham operation, sham + body weight-matched (BWM) to the RYGB group, osmotic minipump delivering PYY3-36 (0.1 mg/kg/day), liraglutide s.c. (0.4 mg/kg/day), PYY3-36 + liraglutide, and saline. All groups (except BWM) were kept on a free choice of high- and low-fat diets. Four weeks after interventions, hypothalami were collected for RNA sequencing. Results: While rats in the RYGB, BWM, and PYY3-36 + liraglutide groups had comparable reductions in body weight, only RYGB and BWM treatment had a major impact on hypothalamic gene expression. In these groups, hypothalamic leptin receptor expression as well as the JAK-STAT, PI3K-Akt, and AMPK signaling pathways were upregulated. No significant changes could be detected in PYY3-36 + liraglutide-, liraglutide-, and PYY-treated groups. Conclusions: Despite causing similar body weight changes compared to RYGB and BWM, PYY3-36 + liraglutide treatment does not impact hypothalamic gene expression. Whether this striking difference is favorable or unfavorable to metabolic health in the long term requires further investigation.}, language = {en} } @article{CorreiaSantosBischlerWestermannetal.2021, author = {Correia Santos, Sara and Bischler, Thorsten and Westermann, Alexander J. and Vogel, J{\"o}rg}, title = {MAPS integrates regulation of actin-targeting effector SteC into the virulence control network of Salmonella small RNA PinT}, series = {Cell Reports}, volume = {34}, journal = {Cell Reports}, number = {5}, doi = {10.1016/j.celrep.2021.108722}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259134}, pages = {108722}, year = {2021}, abstract = {A full understanding of the contribution of small RNAs (sRNAs) to bacterial virulence demands knowledge of their target suites under infection-relevant conditions. Here, we take an integrative approach to capturing targets of the Hfq-associated sRNA PinT, a known post-transcriptional timer of the two major virulence programs of Salmonella enterica. Using MS2 affinity purification and RNA sequencing (MAPS), we identify PinT ligands in bacteria under in vitro conditions mimicking specific stages of the infection cycle and in bacteria growing inside macrophages. This reveals PinT-mediated translational inhibition of the secreted effector kinase SteC, which had gone unnoticed in previous target searches. Using genetic, biochemical, and microscopic assays, we provide evidence for PinT-mediated repression of steC mRNA, eventually delaying actin rearrangements in infected host cells. Our findings support the role of PinT as a central post-transcriptional regulator in Salmonella virulence and illustrate the need for complementary methods to reveal the full target suites of sRNAs.}, language = {en} } @article{WenckerMarincolaSchoenfelderetal.2021, author = {Wencker, Freya D. R and Marincola, Gabriella and Schoenfelder, Sonja M. K. and Maaß, Sandra and Becher, D{\"o}rte and Ziebuhr, Wilma}, title = {Another layer of complexity in Staphylococcus aureus methionine biosynthesis control: unusual RNase III-driven T-box riboswitch cleavage determines met operon mRNA stability and decay}, series = {Nucleic Acids Research}, volume = {49}, journal = {Nucleic Acids Research}, number = {4}, doi = {10.1093/nar/gkaa1277}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259029}, pages = {2192-2212}, year = {2021}, abstract = {In Staphylococcus aureus, de novo methionine biosynthesis is regulated by a unique hierarchical pathway involving stringent-response controlled CodY repression in combination with a T-box riboswitch and RNA decay. The T-box riboswitch residing in the 5′ untranslated region (met leader RNA) of the S. aureus metICFE-mdh operon controls downstream gene transcription upon interaction with uncharged methionyl-tRNA. met leader and metICFE-mdh (m)RNAs undergo RNase-mediated degradation in a process whose molecular details are poorly understood. Here we determined the secondary structure of the met leader RNA and found the element to harbor, beyond other conserved T-box riboswitch structural features, a terminator helix which is target for RNase III endoribonucleolytic cleavage. As the terminator is a thermodynamically highly stable structure, it also forms posttranscriptionally in met leader/ metICFE-mdh read-through transcripts. Cleavage by RNase III releases the met leader from metICFE-mdh mRNA and initiates RNase J-mediated degradation of the mRNA from the 5′-end. Of note, metICFE-mdh mRNA stability varies over the length of the transcript with a longer lifespan towards the 3′-end. The obtained data suggest that coordinated RNA decay represents another checkpoint in a complex regulatory network that adjusts costly methionine biosynthesis to current metabolic requirements.}, language = {en} } @article{MarincolaJaschkowitzKieningeretal.2021, author = {Marincola, Gabriella and Jaschkowitz, Greta and Kieninger, Ann-Katrin and Wencker, Freya D.R. and Feßler, Andrea T. and Schwarz, Stefan and Ziebuhr, Wilma}, title = {Plasmid-Chromosome Crosstalk in Staphylococcus aureus: A Horizontally Acquired Transcription Regulator Controls Polysaccharide Intercellular Adhesin-Mediated Biofilm Formation}, series = {Frontiers in Cellular and Infection Microbiology}, volume = {11}, journal = {Frontiers in Cellular and Infection Microbiology}, issn = {2235-2988}, doi = {10.3389/fcimb.2021.660702}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-232903}, year = {2021}, abstract = {Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) of clonal complex CC398 typically carry various antimicrobial resistance genes, many of them located on plasmids. In the bovine LA-MRSA isolate Rd11, we previously identified plasmid pAFS11 in which resistance genes are co-localized with a novel ica-like gene cluster, harboring genes required for polysaccharide intercellular adhesin (PIA)-mediated biofilm formation. The ica genes on pAFS11 were acquired in addition to a pre-existing ica locus on the S. aureus Rd11 chromosomal DNA. Both loci consist of an icaADBC operon and icaR, encoding a corresponding icaADBC repressor. Despite carrying two biofilm gene copies, strain Rd11 did not produce PIA and transformation of pAFS11 into another S. aureus strain even slightly diminished PIA-mediated biofilm formation. By focusing on the molecular background of the biofilm-negative phenotype of pAFS11-carrying S. aureus, we identified the pAFS11-borne ica locus copy as functionally fully active. However, transcription of both plasmid- and core genome-derived icaADBC operons were efficiently suppressed involving IcaR. Surprisingly, although being different on the amino acid sequence level, the two IcaR repressor proteins are mutually replaceable and are able to interact with the icaA promoter region of the other copy. We speculate that this regulatory crosstalk causes the biofilm-negative phenotype in S. aureus Rd11. The data shed light on an unexpected regulatory interplay between pre-existing and newly acquired DNA traits in S. aureus. This also raises interesting general questions regarding functional consequences of gene transfer events and their putative implications for the adaptation and evolution of bacterial pathogens.}, language = {en} } @article{MasotaVoggOhlsenetal.2021, author = {Masota, Nelson E. and Vogg, Gerd and Ohlsen, Knut and Holzgrabe, Ulrike}, title = {Reproducibility challenges in the search for antibacterial compounds from nature}, series = {PLoS One}, volume = {16}, journal = {PLoS One}, number = {7}, doi = {10.1371/journal.pone.0255437}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260239}, year = {2021}, abstract = {Background Reproducibility of reported antibacterial activities of plant extracts has long remained questionable. Although plant-related factors should be well considered in serious pharmacognostic research, they are often not addressed in many research papers. Here we highlight the challenges in reproducing antibacterial activities of plant extracts. Methods Plants with reported antibacterial activities of interest were obtained from a literature review. Antibacterial activities against Escherichia coli and Klebsiella pneumoniae were tested using extracts' solutions in 10\% DMSO and acetone. Compositions of working solutions from both solvents were established using LC-MS analysis. Moreover, the availability of details likely to affect reproducibility was evaluated in articles which reported antibacterial activities of studied plants. Results Inhibition of bacterial growth at MIC of 256-1024 μg/mL was observed in only 15.4\% of identical plant species. These values were 4-16-fold higher than those reported earlier. Further, 18.2\% of related plant species had MICs of 128-256 μg/mL. Besides, 29.2\% and 95.8\% of the extracts were soluble to sparingly soluble in 10\% DMSO and acetone, respectively. Extracts' solutions in both solvents showed similar qualitative compositions, with differing quantities of corresponding phytochemicals. Details regarding seasons and growth state at collection were missing in 65\% and 95\% of evaluated articles, respectively. Likewise, solvents used to dissolve the extracts were lacking in 30\% of the articles, whereas 40\% of them used unidentified bacterial isolates. Conclusion Reproducibility of previously reported activities from plants' extracts is a multi-factorial aspect. Thus, collective approaches are necessary in addressing the highlighted challenges.}, language = {en} } @article{GehrmannHertleinHopkeetal.2021, author = {Gehrmann, Robin and Hertlein, Tobias and Hopke, Elisa and Ohlsen, Knut and Lalk, Michael and Hilgeroth, Andreas}, title = {Novel small-molecule hybrid-antibacterial agents against S. aureus and MRSA strains}, series = {Molecules}, volume = {27}, journal = {Molecules}, number = {1}, issn = {1420-3049}, doi = {10.3390/molecules27010061}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-252371}, year = {2021}, abstract = {Ongoing resistance developments against antibiotics that also affect last-resort antibiotics require novel antibacterial compounds. Strategies to discover such novel structures have been dimerization or hybridization of known antibacterial agents. We found novel antibacterial agents by dimerization of indols and hybridization with carbazoles. They were obtained in a simple one-pot reaction as bisindole tetrahydrocarbazoles. Further oxidation led to bisindole carbazoles with varied substitutions of both the indole and the carbazole scaffold. Both the tetrahydrocarbazoles and the carbazoles have been evaluated in various S. aureus strains, including MRSA strains. Those 5-cyano substituted derivatives showed best activities as determined by MIC values. The tetrahydrocarbazoles partly exceed the activity of the carbazole compounds and thus the activity of the used standard antibiotics. Thus, promising lead compounds could be identified for further studies.}, language = {en} } @article{StelznerBoynyHertleinetal.2021, author = {Stelzner, Kathrin and Boyny, Aziza and Hertlein, Tobias and Sroka, Aneta and Moldovan, Adriana and Paprotka, Kerstin and Kessie, David and Mehling, Helene and Potempa, Jan and Ohlsen, Knut and Fraunholz, Martin J. and Rudel, Thomas}, title = {Intracellular Staphylococcus aureus employs the cysteine protease staphopain A to induce host cell death in epithelial cells}, series = {PLoS Pathogens}, volume = {17}, journal = {PLoS Pathogens}, number = {9}, doi = {10.1371/journal.ppat.1009874}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-263908}, year = {2021}, abstract = {Staphylococcus aureus is a major human pathogen, which can invade and survive in non-professional and professional phagocytes. Uptake by host cells is thought to contribute to pathogenicity and persistence of the bacterium. Upon internalization by epithelial cells, cytotoxic S. aureus strains can escape from the phagosome, replicate in the cytosol and induce host cell death. Here, we identified a staphylococcal cysteine protease to induce cell death after translocation of intracellular S. aureus into the host cell cytoplasm. We demonstrated that loss of staphopain A function leads to delayed onset of host cell death and prolonged intracellular replication of S. aureus in epithelial cells. Overexpression of staphopain A in a non-cytotoxic strain facilitated intracellular killing of the host cell even in the absence of detectable intracellular replication. Moreover, staphopain A contributed to efficient colonization of the lung in a mouse pneumonia model. In phagocytic cells, where intracellular S. aureus is exclusively localized in the phagosome, staphopain A did not contribute to cytotoxicity. Our study suggests that staphopain A is utilized by S. aureus to exit the epithelial host cell and thus contributes to tissue destruction and dissemination of infection. Author summary Staphylococcus aureus is an antibiotic-resistant pathogen that emerges in hospital and community settings and can cause a variety of diseases ranging from skin abscesses to lung inflammation and blood poisoning. The bacterium can asymptomatically colonize the upper respiratory tract and skin of humans and take advantage of opportune conditions, like immunodeficiency or breached barriers, to cause infection. Although S. aureus was not regarded as intracellular bacterium, it can be internalized by human cells and subsequently exit the host cells by induction of cell death, which is considered to cause tissue destruction and spread of infection. The bacterial virulence factors and underlying molecular mechanisms involved in the intracellular lifestyle of S. aureus remain largely unknown. We identified a bacterial cysteine protease to contribute to host cell death of epithelial cells mediated by intracellular S. aureus. Staphopain A induced killing of the host cell after translocation of the pathogen into the cell cytosol, while bacterial proliferation was not required. Further, the protease enhanced survival of the pathogen during lung infection. These findings reveal a novel, intracellular role for the bacterial protease staphopain A.}, language = {en} } @article{GerovaWickeChiharaetal.2021, author = {Gerova, Milan and Wicke, Laura and Chihara, Kotaro and Schneider, Cornelius and Lavigne, Rob and Vogel, J{\"o}rg}, title = {A grad-seq view of RNA and protein complexes in Pseudomonas aeruginosa under standard and bacteriophage predation conditions}, series = {mbio}, volume = {12}, journal = {mbio}, number = {1}, doi = {10.1128/mBio.03454-20}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259054}, pages = {e03454-20}, year = {2021}, abstract = {The Gram-negative rod-shaped bacterium Pseudomonas aeruginosa is not only a major cause of nosocomial infections but also serves as a model species of bacterial RNA biology. While its transcriptome architecture and posttranscriptional regulation through the RNA-binding proteins Hfq, RsmA, and RsmN have been studied in detail, global information about stable RNA-protein complexes in this human pathogen is currently lacking. Here, we implement gradient profiling by sequencing (Grad-seq) in exponentially growing P. aeruginosa cells to comprehensively predict RNA and protein complexes, based on glycerol gradient sedimentation profiles of >73\% of all transcripts and ∼40\% of all proteins. As to benchmarking, our global profiles readily reported complexes of stable RNAs of P. aeruginosa, including 6S RNA with RNA polymerase and associated product RNAs (pRNAs). We observe specific clusters of noncoding RNAs, which correlate with Hfq and RsmA/N, and provide a first hint that P. aeruginosa expresses a ProQ-like FinO domain-containing RNA-binding protein. To understand how biological stress may perturb cellular RNA/protein complexes, we performed Grad-seq after infection by the bacteriophage ΦKZ. This model phage, which has a well-defined transcription profile during host takeover, displayed efficient translational utilization of phage mRNAs and tRNAs, as evident from their increased cosedimentation with ribosomal subunits. Additionally, Grad-seq experimentally determines previously overlooked phage-encoded noncoding RNAs. Taken together, the Pseudomonas protein and RNA complex data provided here will pave the way to a better understanding of RNA-protein interactions during viral predation of the bacterial cell. IMPORTANCE Stable complexes by cellular proteins and RNA molecules lie at the heart of gene regulation and physiology in any bacterium of interest. It is therefore crucial to globally determine these complexes in order to identify and characterize new molecular players and regulation mechanisms. Pseudomonads harbor some of the largest genomes known in bacteria, encoding ∼5,500 different proteins. Here, we provide a first glimpse on which proteins and cellular transcripts form stable complexes in the human pathogen Pseudomonas aeruginosa. We additionally performed this analysis with bacteria subjected to the important and frequently encountered biological stress of a bacteriophage infection. We identified several molecules with established roles in a variety of cellular pathways, which were affected by the phage and can now be explored for their role during phage infection. Most importantly, we observed strong colocalization of phage transcripts and host ribosomes, indicating the existence of specialized translation mechanisms during phage infection. All data are publicly available in an interactive and easy to use browser.}, language = {en} } @article{MottolaRamirezZavalaHuenningeretal.2021, author = {Mottola, Austin and Ram{\´i}rez-Zavala, Bernardo and H{\"u}nninger, Kerstin and Kurzai, Oliver and Morschh{\"a}user, Joachim}, title = {The zinc cluster transcription factor Czf1 regulates cell wall architecture and integrity in Candida albicans}, series = {Molecular Microbiology}, volume = {116}, journal = {Molecular Microbiology}, number = {2}, doi = {10.1111/mmi.14727}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259583}, pages = {483-497}, year = {2021}, abstract = {The fungal cell wall is essential for the maintenance of cellular integrity and mediates interactions of the cells with the environment. It is a highly flexible organelle whose composition and organization is modulated in response to changing growth conditions. In the pathogenic yeast Candida albicans, a network of signaling pathways regulates the structure of the cell wall, and mutants with defects in these pathways are hypersensitive to cell wall stress. By harnessing a library of genetically activated forms of all C. albicans zinc cluster transcription factors, we found that a hyperactive Czf1 rescued the hypersensitivity to cell wall stress of different protein kinase deletion mutants. The hyperactive Czf1 induced the expression of many genes with cell wall-related functions and caused visible changes in the cell wall structure. C. albicans czf1Δ mutants were hypersensitive to the antifungal drug caspofungin, which inhibits cell wall biosynthesis. The changes in cell wall architecture caused by hyperactivity or absence of Czf1 resulted in an increased recognition of C. albicans by human neutrophils. Our results show that Czf1, which is known as a regulator of filamentous growth and white-opaque switching, controls the expression of cell wall genes and modulates the architecture of the cell wall.}, language = {en} } @article{Bartfeld2021, author = {Bartfeld, Sina}, title = {Realizing the potential of organoids — an interview with Hans Clevers}, series = {Journal of Molecular Medicine}, volume = {99}, journal = {Journal of Molecular Medicine}, issn = {Journal of Molecular Medicine}, doi = {10.1007/s00109-020-02025-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-235804}, pages = {443-447}, year = {2021}, abstract = {No abstract available.}, language = {en} } @article{WallaschekReuterSilkenatetal.2021, author = {Wallaschek, Nina and Reuter, Saskia and Silkenat, Sabrina and Wolf, Katharina and Niklas, Carolin and {\"O}zge, Kayisoglu and Aguilar, Carmen and Wiegering, Armin and Germer, Christoph-Thomas and Kircher, Stefan and Rosenwald, Andreas and Shannon-Lowe, Claire and Bartfeld, Sina}, title = {Ephrin receptor A2, the epithelial receptor for Epstein-Barr virus entry, is not available for efficient infection in human gastric organoids}, series = {PLoS Pathogens}, volume = {17}, journal = {PLoS Pathogens}, number = {2}, doi = {10.1371/journal.ppat.1009210}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259206}, pages = {e1009210}, year = {2021}, abstract = {Epstein-Barr virus (EBV) is best known for infection of B cells, in which it usually establishes an asymptomatic lifelong infection, but is also associated with the development of multiple B cell lymphomas. EBV also infects epithelial cells and is associated with all cases of undifferentiated nasopharyngeal carcinoma (NPC). EBV is etiologically linked with at least 8\% of gastric cancer (EBVaGC) that comprises a genetically and epigenetically distinct subset of GC. Although we have a very good understanding of B cell entry and lymphomagenesis, the sequence of events leading to EBVaGC remains poorly understood. Recently, ephrin receptor A2 (EPHA2) was proposed as the epithelial cell receptor on human cancer cell lines. Although we confirm some of these results, we demonstrate that EBV does not infect healthy adult stem cell-derived gastric organoids. In matched pairs of normal and cancer-derived organoids from the same patient, EBV only reproducibly infected the cancer organoids. While there was no clear pattern of differential expression between normal and cancer organoids for EPHA2 at the RNA and protein level, the subcellular location of the protein differed markedly. Confocal microscopy showed EPHA2 localization at the cell-cell junctions in primary cells, but not in cancer cell lines. Furthermore, histologic analysis of patient tissue revealed the absence of EBV in healthy epithelium and presence of EBV in epithelial cells from inflamed tissue. These data suggest that the EPHA2 receptor is not accessible to EBV on healthy gastric epithelial cells with intact cell-cell contacts, but either this or another, yet to be identified receptor may become accessible following cellular changes induced by inflammation or transformation, rendering changes in the cellular architecture an essential prerequisite to EBV infection.}, language = {en} } @article{PernitzschAlzheimerBremeretal.2021, author = {Pernitzsch, Sandy R. and Alzheimer, Mona and Bremer, Belinda U. and Robbe-Saule, Marie and De Reuse, Hilde and Sharma, Cynthia M.}, title = {Small RNA mediated gradual control of lipopolysaccharide biosynthesis affects antibiotic resistance in Helicobacter pylori}, series = {Nature Communications}, volume = {12}, journal = {Nature Communications}, number = {1}, doi = {10.1038/s41467-021-24689-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-261536}, year = {2021}, abstract = {The small, regulatory RNA RepG (Regulator of polymeric G-repeats) regulates the expression of the chemotaxis receptor TlpB in Helicobacter pylori by targeting a variable G-repeat in the tlpB mRNA leader. Here, we show that RepG additionally controls lipopolysaccharide (LPS) phase variation by also modulating the expression of a gene (hp0102) that is co-transcribed with tlpB. The hp0102 gene encodes a glycosyltransferase required for LPS O-chain biosynthesis and in vivo colonization of the mouse stomach. The G-repeat length defines a gradual (rather than ON/OFF) control of LPS biosynthesis by RepG, and leads to gradual resistance to a membrane-targeting antibiotic. Thus, RepG-mediated modulation of LPS structure might impact host immune recognition and antibiotic sensitivity, thereby helping H. pylori to adapt and persist in the host. The small RNA RepG modulates expression of chemotaxis receptor TlpB in Helicobacter pylori by targeting a length-variable G-repeat in the tlpB mRNA. Here, Pernitzsch et al. show that RepG also gradually controls lipopolysaccharide biosynthesis, antibiotic susceptibility, and in-vivo colonization of the stomach, by regulating a gene that is co-transcribed with tlpB.}, language = {en} } @article{UlbrichtNickelWeidenbachetal.2020, author = {Ulbricht, Andrea and Nickel, Lisa and Weidenbach, Katrin and Vargas Gebauer, Herman and Kießling, Claudia and F{\"o}rstner, Konrad U. and Schmitz, Ruth A.}, title = {The CARF protein MM_0565 affects transcription of the casposon-encoded cas1-solo gene in Methanosarcina mazei G{\"o}1}, series = {Biomolecules}, volume = {10}, journal = {Biomolecules}, number = {8}, issn = {2218-273X}, doi = {10.3390/biom10081161}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-211097}, year = {2020}, abstract = {Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) loci are found in bacterial and archaeal genomes where they provide the molecular machinery for acquisition of immunity against foreign DNA. In addition to the cas genes fundamentally required for CRISPR activity, a second class of genes is associated with the CRISPR loci, of which many have no reported function in CRISPR-mediated immunity. Here, we characterize MM_0565 associated to the type I-B CRISPR-locus of Methanosarcina mazei G{\"o}1. We show that purified MM_0565 composed of a CRISPR-Cas Associated Rossmann Fold (CARF) and a winged helix-turn-helix domain forms a dimer in solution; in vivo, the dimeric MM_0565 is strongly stabilized under high salt stress. While direct effects on CRISPR-Cas transcription were not detected by genetic approaches, specific binding of MM_0565 to the leader region of both CRISPR-Cas systems was observed by microscale thermophoresis and electromobility shift assays. Moreover, overexpression of MM_0565 strongly induced transcription of the cas1-solo gene located in the recently reported casposon, the gene product of which shows high similarity to classical Cas1 proteins. Based on our findings, and taking the absence of the expressed CRISPR locus-encoded Cas1 protein into account, we hypothesize that MM_0565 might modulate the activity of the CRISPR systems on different levels.}, language = {en} } @article{MuehlbergUmstaetterDomhanetal.2020, author = {M{\"u}hlberg, Eric and Umst{\"a}tter, Florian and Domhan, Cornelius and Hertlein, Tobias and Ohlsen, Knut and Krause, Andreas and Kleist, Christian and Beijer, Barbro and Zimmermann, Stefan and Haberkorn, Uwe and Mier, Walter and Uhl, Philipp}, title = {Vancomycin-lipopeptide conjugates with high antimicrobial activity on vancomycin-resistant enterococci}, series = {Pharmaceuticals}, volume = {13}, journal = {Pharmaceuticals}, number = {6}, issn = {1424-8247}, doi = {10.3390/ph13060110}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-205879}, year = {2020}, abstract = {Multidrug-resistant bacteria represent one of the most important health care problems worldwide. While there are numerous drugs available for standard therapy, there are only a few compounds capable of serving as a last resort for severe infections. Therefore, approaches to control multidrug-resistant bacteria must be implemented. Here, a strategy of reactivating the established glycopeptide antibiotic vancomycin by structural modification with polycationic peptides and subsequent fatty acid conjugation to overcome the resistance of multidrug-resistant bacteria was followed. This study especially focuses on the structure-activity relationship, depending on the modification site and fatty acid chain length. The synthesized conjugates showed high antimicrobial potential on vancomycin-resistant enterococci. We were able to demonstrate that the antimicrobial activity of the vancomycin-lipopeptide conjugates depends on the chain length of the attached fatty acid. All conjugates showed good cytocompatibility in vitro and in vivo. Radiolabeling enabled the in vivo determination of pharmacokinetics in Wistar rats by molecular imaging and biodistribution studies. An improved biodistribution profile in comparison to unmodified vancomycin was observed. While vancomycin is rapidly excreted by the kidneys, the most potent conjugate shows a hepatobiliary excretion profile. In conclusion, these results demonstrate the potential of the structural modification of already established antibiotics to provide highly active compounds for tackling multidrug-resistant bacteria.}, language = {en} } @article{HennessenMiethkeZaburannyietal.2020, author = {Hennessen, Fabienne and Miethke, Marcus and Zaburannyi, Nestor and Loose, Maria and Lukežič, Tadeja and Bernecker, Steffen and H{\"u}ttel, Stephan and Jansen, Rolf and Schmiedel, Judith and Fritzenwanker, Moritz and Imirzalioglu, Can and Vogel, J{\"o}rg and Westermann, Alexander J. and Hesterkamp, Thomas and Stadler, Marc and Wagenlehner, Florian and Petković, Hrvoje and Herrmann, Jennifer and M{\"u}ller, Rolf}, title = {Amidochelocardin overcomes resistance mechanisms exerted on tetracyclines and natural chelocardin}, series = {Antibiotics}, volume = {9}, journal = {Antibiotics}, number = {9}, issn = {2079-6382}, doi = {10.3390/antibiotics9090619}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-213149}, year = {2020}, abstract = {The reassessment of known but neglected natural compounds is a vital strategy for providing novel lead structures urgently needed to overcome antimicrobial resistance. Scaffolds with resistance-breaking properties represent the most promising candidates for a successful translation into future therapeutics. Our study focuses on chelocardin, a member of the atypical tetracyclines, and its bioengineered derivative amidochelocardin, both showing broad-spectrum antibacterial activity within the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) panel. Further lead development of chelocardins requires extensive biological and chemical profiling to achieve favorable pharmaceutical properties and efficacy. This study shows that both molecules possess resistance-breaking properties enabling the escape from most common tetracycline resistance mechanisms. Further, we show that these compounds are potent candidates for treatment of urinary tract infections due to their in vitro activity against a large panel of multidrug-resistant uropathogenic clinical isolates. In addition, the mechanism of resistance to natural chelocardin was identified as relying on efflux processes, both in the chelocardin producer Amycolatopsis sulphurea and in the pathogen Klebsiella pneumoniae. Resistance development in Klebsiella led primarily to mutations in ramR, causing increased expression of the acrAB-tolC efflux pump. Most importantly, amidochelocardin overcomes this resistance mechanism, revealing not only the improved activity profile but also superior resistance-breaking properties of this novel antibacterial compound.}, language = {en} } @article{SchulteSchweinlinWestermannetal.2020, author = {Schulte, Leon N. and Schweinlin, Matthias and Westermann, Alexander J. and Janga, Harshavardhan and Santos, Sara C. and Appenzeller, Silke and Walles, Heike and Vogel, J{\"o}rg and Metzger, Marco}, title = {An Advanced Human Intestinal Coculture Model Reveals Compartmentalized Host and Pathogen Strategies during Salmonella Infection}, series = {mBio}, volume = {11, 2020}, journal = {mBio}, number = {1}, doi = {10.1128/mBio.03348-19}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-229428}, year = {2020}, abstract = {A major obstacle in infection biology is the limited ability to recapitulate human disease trajectories in traditional cell culture and animal models, which impedes the translation of basic research into clinics. Here, we introduce a three-dimensional (3D) intestinal tissue model to study human enteric infections at a level of detail that is not achieved by conventional two-dimensional monocultures. Our model comprises epithelial and endothelial layers, a primary intestinal collagen scaffold, and immune cells. Upon Salmonella infection, the model mimics human gastroenteritis, in that it restricts the pathogen to the epithelial compartment, an advantage over existing mouse models. Application of dual transcriptome sequencing to the Salmonella-infected model revealed the communication of epithelial, endothelial, monocytic, and natural killer cells among each other and with the pathogen. Our results suggest that Salmonella uses its type III secretion systems to manipulate STAT3-dependent inflammatory responses locally in the epithelium without accompanying alterations in the endothelial compartment. Our approach promises to reveal further human-specific infection strategies employed by Salmonella and other pathogens. IMPORTANCE Infection research routinely employs in vitro cell cultures or in vivo mouse models as surrogates of human hosts. Differences between murine and human immunity and the low level of complexity of traditional cell cultures, however, highlight the demand for alternative models that combine the in vivo-like properties of the human system with straightforward experimental perturbation. Here, we introduce a 3D tissue model comprising multiple cell types of the human intestinal barrier, a primary site of pathogen attack. During infection with the foodborne pathogen Salmonella enterica serovar Typhimurium, our model recapitulates human disease aspects, including pathogen restriction to the epithelial compartment, thereby deviating from the systemic infection in mice. Combination of our model with state-of-the-art genetics revealed Salmonella-mediated local manipulations of human immune responses, likely contributing to the establishment of the pathogen's infection niche. We propose the adoption of similar 3D tissue models to infection biology, to advance our understanding of molecular infection strategies employed by bacterial pathogens in their human host.}, language = {en} } @article{BauriedlGerovacHeidrichetal.2020, author = {Bauriedl, Saskia and Gerovac, Milan and Heidrich, Nadja and Bischler, Thorsten and Barquist, Lars and Vogel, J{\"o}rg and Schoen, Christoph}, title = {The minimal meningococcal ProQ protein has an intrinsic capacity for structure-based global RNA recognition}, series = {Nature Communications}, volume = {11}, journal = {Nature Communications}, doi = {10.1038/s41467-020-16650-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-230040}, year = {2020}, abstract = {FinO-domain proteins are a widespread family of bacterial RNA-binding proteins with regulatory functions. Their target spectrum ranges from a single RNA pair, in the case of plasmid-encoded FinO, to global RNA regulons, as with enterobacterial ProQ. To assess whether the FinO domain itself is intrinsically selective or promiscuous, we determine in vivo targets of Neisseria meningitidis, which consists of solely a FinO domain. UV-CLIP-seq identifies associations with 16 small non-coding sRNAs and 166 mRNAs. Meningococcal ProQ predominantly binds to highly structured regions and generally acts to stabilize its RNA targets. Loss of ProQ alters transcript levels of >250 genes, demonstrating that this minimal ProQ protein impacts gene expression globally. Phenotypic analyses indicate that ProQ promotes oxidative stress resistance and DNA damage repair. We conclude that FinO domain proteins recognize some abundant type of RNA shape and evolve RNA binding selectivity through acquisition of additional regions that constrain target recognition. FinO-domain proteins are bacterial RNA-binding proteins with a wide range of target specificities. Here, the authors employ UV CLIP-seq and show that minimal ProQ protein of Neisseria meningitidis binds to various small non-coding RNAs and mRNAs involved in virulence.}, language = {en} } @article{AlzheimerSvenssonKoenigetal.2020, author = {Alzheimer, Mona and Svensson, Sarah L. and K{\"o}nig, Fabian and Schweinlin, Matthias and Metzger, Marco and Walles, Heike and Sharma, Cynthia M.}, title = {A three-dimensional intestinal tissue model reveals factors and small regulatory RNAs important for colonization with Campylobacter jejuni}, series = {PLoS Pathogens}, volume = {16}, journal = {PLoS Pathogens}, number = {2}, doi = {10.1371/journal.ppat.1008304}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-229454}, year = {2020}, abstract = {The Gram-negative Epsilonproteobacterium Campylobacter jejuni is currently the most prevalent bacterial foodborne pathogen. Like for many other human pathogens, infection studies with C. jejuni mainly employ artificial animal or cell culture models that can be limited in their ability to reflect the in-vivo environment within the human host. Here, we report the development and application of a human three-dimensional (3D) infection model based on tissue engineering to study host-pathogen interactions. Our intestinal 3D tissue model is built on a decellularized extracellular matrix scaffold, which is reseeded with human Caco-2 cells. Dynamic culture conditions enable the formation of a polarized mucosal epithelial barrier reminiscent of the 3D microarchitecture of the human small intestine. Infection with C. jejuni demonstrates that the 3D tissue model can reveal isolate-dependent colonization and barrier disruption phenotypes accompanied by perturbed localization of cell-cell junctions. Pathogenesis-related phenotypes of C. jejuni mutant strains in the 3D model deviated from those obtained with 2D-monolayers, but recapitulated phenotypes previously observed in animal models. Moreover, we demonstrate the involvement of a small regulatory RNA pair, CJnc180/190, during infections and observe different phenotypes of CJnc180/190 mutant strains in 2D vs. 3D infection models. Hereby, the CJnc190 sRNA exerts its pathogenic influence, at least in part, via repression of PtmG, which is involved in flagellin modification. Our results suggest that the Caco-2 cell-based 3D tissue model is a valuable and biologically relevant tool between in-vitro and in-vivo infection models to study virulence of C. jejuni and other gastrointestinal pathogens.}, language = {en} } @article{Vogel2020, author = {Vogel, J{\"o}rg}, title = {An RNA biology perspective on species-specific programmable RNA antibiotics}, series = {Molecular Microbiology}, volume = {113}, journal = {Molecular Microbiology}, number = {3}, doi = {10.1111/mmi.14476}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-214869}, pages = {550 -- 559}, year = {2020}, abstract = {Our body is colonized by a vast array of bacteria the sum of which forms our microbiota. The gut alone harbors >1,000 bacterial species. An understanding of their individual or synergistic contributions to human health and disease demands means to interfere with their functions on the species level. Most of the currently available antibiotics are broad-spectrum, thus too unspecific for a selective depletion of a single species of interest from the microbiota. Programmable RNA antibiotics in the form of short antisense oligonucleotides (ASOs) promise to achieve precision manipulation of bacterial communities. These ASOs are coupled to small peptides that carry them inside the bacteria to silence mRNAs of essential genes, for example, to target antibiotic-resistant pathogens as an alternative to standard antibiotics. There is already proof-of-principle with diverse bacteria, but many open questions remain with respect to true species specificity, potential off-targeting, choice of peptides for delivery, bacterial resistance mechanisms and the host response. While there is unlikely a one-fits-all solution for all microbiome species, I will discuss how recent progress in bacterial RNA biology may help to accelerate the development of programmable RNA antibiotics for microbiome editing and other applications.}, language = {en} } @article{BarthelsMarincolaMarciniaketal.2020, author = {Barthels, Fabian and Marincola, Gabriella and Marciniak, Tessa and Konh{\"a}user, Matthias and Hammerschmidt, Stefan and Bierlmeier, Jan and Distler, Ute and Wich, Peter R. and Tenzer, Stefan and Schwarzer, Dirk and Ziebuhr, Wilma and Schirmeister, Tanja}, title = {Asymmetric Disulfanylbenzamides as Irreversible and Selective Inhibitors of Staphylococcus aureus Sortase A}, series = {ChemMedChem}, volume = {15}, journal = {ChemMedChem}, number = {10}, doi = {10.1002/cmdc.201900687}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-214581}, pages = {839 -- 850}, year = {2020}, abstract = {Staphylococcus aureus is one of the most frequent causes of nosocomial and community-acquired infections, with drug-resistant strains being responsible for tens of thousands of deaths per year. S. aureus sortase A inhibitors are designed to interfere with virulence determinants. We have identified disulfanylbenzamides as a new class of potent inhibitors against sortase A that act by covalent modification of the active-site cysteine. A broad series of derivatives were synthesized to derive structure-activity relationships (SAR). In vitro and in silico methods allowed the experimentally observed binding affinities and selectivities to be rationalized. The most active compounds were found to have single-digit micromolar Ki values and caused up to a 66 \% reduction of S. aureus fibrinogen attachment at an effective inhibitor concentration of 10 μM. This new molecule class exhibited minimal cytotoxicity, low bacterial growth inhibition and impaired sortase-mediated adherence of S. aureus cells.}, language = {en} } @article{MottolaSchwanfelderMorschhaeuser2020, author = {Mottola, Austin and Schwanfelder, Sonja and Morschh{\"a}user, Joachim}, title = {Generation of Viable Candida albicans Mutants Lacking the "Essential" Protein Kinase Snf1 by Inducible Gene Deletion}, series = {mSphere}, volume = {5}, journal = {mSphere}, number = {4}, doi = {10.1128/mSphere.00805-20}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-230524}, year = {2020}, abstract = {The protein kinase Snf1, a member of the highly conserved AMP-activated protein kinase family, is a central regulator of metabolic adaptation. In the pathogenic yeast Candida albicans, Snf1 is considered to be essential, as previous attempts by different research groups to generate homozygous snf1 Delta mutants were unsuccessful. We aimed to elucidate why Snf1 is required for viability in C. albicans by generating snf1 Delta null mutants through forced, inducible gene deletion and observing the terminal phenotype before cell death. Unexpectedly, we found that snf1 Delta mutants were viable and could grow, albeit very slowly, on rich media containing the preferred carbon source glucose. Growth was improved when the cells were incubated at 37 degrees C instead of 30 degrees C, and this phenotype enabled us to isolate homozygous snf1 Delta mutants also by conventional, sequential deletion of both SNF1 alleles in a wild-type C. albicans strain. All snf1 Delta mutants could grow slowly on glucose but were unable to utilize alternative carbon sources. Our results show that, under optimal conditions, C. albicans can live and grow without Snf1. Furthermore, they demonstrate that inducible gene deletion is a powerful method for assessing gene essentiality in C. albicans. IMPORTANCE Essential genes are those that are indispensable for the viability and growth of an organism. Previous studies indicated that the protein kinase Snf1, a central regulator of metabolic adaptation, is essential in the pathogenic yeast Candida albicans, because no homozygous snf1 deletion mutants of C. albicans wild-type strains could be obtained by standard approaches. In order to investigate the lethal consequences of SNF1 deletion, we generated conditional mutants in which SNF1 could be deleted by forced, inducible excision from the genome. Unexpectedly, we found that snf1 null mutants were viable and could grow slowly under optimal conditions. The growth phenotypes of the snf1 Delta mutants explain why such mutants were not recovered in previous attempts. Our study demonstrates that inducible gene deletion is a powerful method for assessing gene essentiality in C. albicans.}, language = {en} } @article{UmstaetterDomhanHertleinetal.2020, author = {Umst{\"a}tter, Florian and Domhan, Cornelius and Hertlein, Tobias and Ohlsen, Knut and M{\"u}hlberg, Eric and Kleist, Christian and Zimmermann, Stefan and Beijer, Barbro and Klika, Karel D. and Haberkorn, Uwe and Mier, Walter and Uhl, Philipp}, title = {Vancomycin Resistance Is Overcome by Conjugation of Polycationic Peptides}, series = {Angewandte Chemie International Edition}, volume = {59}, journal = {Angewandte Chemie International Edition}, number = {23}, doi = {10.1002/anie.202002727}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-215550}, pages = {8823 -- 8827}, year = {2020}, abstract = {Multidrug-resistant bacteria represent one of the biggest challenges facing modern medicine. The increasing prevalence of glycopeptide resistance compromises the efficacy of vancomycin, for a long time considered as the last resort for the treatment of resistant bacteria. To reestablish its activity, polycationic peptides were conjugated to vancomycin. By site-specific conjugation, derivatives that bear the peptide moiety at four different sites of the antibiotic were synthesized. The most potent compounds exhibited an approximately 1000-fold increased antimicrobial activity and were able to overcome the most important types of vancomycin resistance. Additional blocking experiments using d-Ala-d-Ala revealed a mode of action beyond inhibition of cell-wall formation. The antimicrobial potential of the lead candidate FU002 for bacterial infection treatments could be demonstrated in an in vivo study. Molecular imaging and biodistribution studies revealed that conjugation engenders superior pharmacokinetics.}, language = {en} } @article{EskenGorisGadkarietal.2020, author = {Esken, Jens and Goris, Tobias and Gadkari, Jennifer and Bischler, Thorsten and F{\"o}rstner, Konrad U. and Sharma, Cynthia M. and Diekert, Gabriele and Schubert, Torsten}, title = {Tetrachloroethene respiration in Sulfurospirillum species is regulated by a two-component system as unraveled by comparative genomics, transcriptomics, and regulator binding studies}, series = {MicrobiologyOpen}, volume = {9}, journal = {MicrobiologyOpen}, number = {12}, doi = {10.1002/mbo3.1138}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-225754}, year = {2020}, abstract = {Energy conservation via organohalide respiration (OHR) in dehalogenating Sulfurospirillum species is an inducible process. However, the gene products involved in tetrachloroethene (PCE) sensing and signal transduction have not been unambiguously identified. Here, genome sequencing of Sulfurospirillum strains defective in PCE respiration and comparative genomics, which included the PCE-respiring representatives of the genus, uncovered the genetic inactivation of a two-component system (TCS) in the OHR gene region of the natural mutants. The assumption that the TCS gene products serve as a PCE sensor that initiates gene transcription was supported by the constitutive low-level expression of the TCS operon in fumarate-adapted cells of Sulfurospirillum multivorans. Via RNA sequencing, eight transcriptional units were identified in the OHR gene region, which includes the TCS operon, the PCE reductive dehalogenase operon, the gene cluster for norcobamide biosynthesis, and putative accessory genes with unknown functions. The OmpR-family response regulator (RR) encoded in the TCS operon was functionally characterized by promoter-binding assays. The RR bound a cis-regulatory element that contained a consensus sequence of a direct repeat (CTATW) separated by 17 bp. Its location either overlapping the -35 box or 50 bp further upstream indicated different regulatory mechanisms. Sequence variations in the regulator binding sites identified in the OHR gene region were in accordance with differences in the transcript levels of the respective gene clusters forming the PCE regulon. The results indicate the presence of a fine-tuned regulatory network controlling PCE metabolism in dehalogenating Sulfurospirillum species, a group of metabolically versatile organohalide-respiring bacteria.}, language = {en} } @article{MayrRamirezZavalaKruegeretal.2020, author = {Mayr, Eva-Maria and Ram{\´i}rez-Zavala, Bernardo and Kr{\"u}ger, Ines and Morschh{\"a}user, Joachim}, title = {A Zinc Cluster Transcription Factor Contributes to the Intrinsic Fluconazole Resistance of Candida auris}, series = {mSphere}, volume = {5}, journal = {mSphere}, number = {2}, doi = {10.1128/mSphere.00279-20}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-229937}, year = {2020}, abstract = {ABSTRACT The recently emerged pathogenic yeast Candida auris is a major concern for human health, because it is easily transmissible, difficult to eradicate from hospitals, and highly drug resistant. Most C. auris isolates are resistant to the widely used antifungal drug fluconazole due to mutations in the target enzyme Erg11 and high activity of efflux pumps, such as Cdr1. In the well-studied, distantly related yeast Candida albicans, overexpression of drug efflux pumps also is a major mechanism of acquired fluconazole resistance and caused by gain-of-function mutations in the zinc cluster transcription factors Mrr1 and Tac1. In this study, we investigated a possible involvement of related transcription factors in efflux pump expression and fluconazole resistance of C. auris. The C. auris genome contains three genes encoding Mrr1 homologs and two genes encoding Tac1 homologs, and we generated deletion mutants lacking these genes in two fluconazole-resistant strains from clade III and clade IV. Deletion of TAC1b decreased the resistance to fluconazole and voriconazole in both strain backgrounds, demonstrating that the encoded transcription factor contributes to azole resistance in C. auris strains from different clades. CDR1 expression was not or only minimally affected in the mutants, indicating that Tac1b can confer increased azole resistance by a CDR1-independent mechanism. IMPORTANCE Candida auris is a recently emerged pathogenic yeast that within a few years after its initial description has spread all over the globe. C. auris is a major concern for human health, because it can cause life-threatening systemic infections, is easily transmissible, and is difficult to eradicate from hospital environments. Furthermore, C. auris is highly drug resistant, especially against the widely used antifungal drug fluconazole. Mutations in the drug target and high activity of efflux pumps are associated with azole resistance, but it is not known how drug resistance genes are regulated in C. auris. We have investigated the potential role of several candidate transcriptional regulators in the intrinsic fluconazole resistance of C. auris and identified a transcription factor that contributes to the high resistance to fluconazole and voriconazole of two C. auris strains from different genetic clades, thereby providing insight into the molecular basis of drug resistance of this medically important yeast."}, language = {en} } @article{MichauxHansenJennichesetal.2020, author = {Michaux, Charlotte and Hansen, Elisabeth E. and Jenniches, Laura and Gerovac, Milan and Barquist, Lars and Vogel, J{\"o}rg}, title = {Single-Nucleotide RNA Maps for the Two Major Nosocomial Pathogens Enterococcus faecalis and Enterococcus faecium}, series = {Frontiers in Cellular and Infection Microbiology}, volume = {10}, journal = {Frontiers in Cellular and Infection Microbiology}, issn = {2235-2988}, doi = {10.3389/fcimb.2020.600325}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-217947}, year = {2020}, abstract = {Enterococcus faecalis and faecium are two major representative clinical strains of the Enterococcus genus and are sadly notorious to be part of the top agents responsible for nosocomial infections. Despite their critical implication in worldwide public healthcare, essential and available resources such as deep transcriptome annotations remain poor, which also limits our understanding of post-transcriptional control small regulatory RNA (sRNA) functions in these bacteria. Here, using the dRNA-seq technique in combination with ANNOgesic analysis, we successfully mapped and annotated transcription start sites (TSS) of both E. faecalis V583 and E. faecium AUS0004 at single nucleotide resolution. Analyzing bacteria in late exponential phase, we capture ~40\% (E. faecalis) and 43\% (E. faecium) of the annotated protein-coding genes, determine 5′ and 3′ UTR (untranslated region) length, and detect instances of leaderless mRNAs. The transcriptome maps revealed sRNA candidates in both bacteria, some found in previous studies and new ones. Expression of candidate sRNAs is being confirmed under biologically relevant environmental conditions. This comprehensive global TSS mapping atlas provides a valuable resource for RNA biology and gene expression analysis in the Enterococci. It can be accessed online at www.helmholtz-hiri.de/en/datasets/enterococcus through an instance of the genomic viewer JBrowse.}, language = {en} } @article{MietrachSchlosserGeibel2019, author = {Mietrach, Nicole and Schlosser, Andreas and Geibel, Sebastian}, title = {An extracellular domain of the EsaA membrane component of the type VIIb secretion system: expression, purification and crystallization}, series = {Acta Crystallographica Section F}, volume = {75}, journal = {Acta Crystallographica Section F}, number = {12}, doi = {10.1107/S2053230X1901495X}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-213681}, pages = {725-730}, year = {2019}, abstract = {The membrane protein EsaA is a conserved component of the type VIIb secretion system. Limited proteolysis of purified EsaA from Staphylococcus aureus USA300 identified a stable 48 kDa fragment, which was mapped by fingerprint mass spectrometry to an uncharacterized extracellular segment of EsaA. Analysis by circular dichroism spectroscopy showed that this fragment folds into a single stable domain made of mostly α-helices with a melting point of 34.5°C. Size-exclusion chromatography combined with multi-angle light scattering indicated the formation of a dimer of the purified extracellular domain. Octahedral crystals were grown in 0.2 M ammonium citrate tribasic pH 7.0, 16\% PEG 3350 using the hanging-drop vapor-diffusion method. Diffraction data were analyzed to 4.0 {\AA} resolution, showing that the crystals belonged to the enantiomorphic tetragonal space groups P41212 or P43212, with unit-cell parameters a = 197.5, b = 197.5, c = 368.3 {\AA}, α = β = γ = 90°.}, language = {en} } @article{SeethalerHertleinWeckleinetal.2019, author = {Seethaler, Marius and Hertlein, Tobias and Wecklein, Bj{\"o}rn and Ymeraj, Alba and Ohlsen, Knut and Lalk, Michael and Hilgeroth, Andreas}, title = {Novel small-molecule antibacterials against Gram-positive pathogens of Staphylococcus and Enterococcus species}, series = {Antibiotics}, volume = {8}, journal = {Antibiotics}, number = {4}, issn = {2079-6382}, doi = {10.3390/antibiotics8040210}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193130}, year = {2019}, abstract = {Defeat of the antibiotic resistance of pathogenic bacteria is one great challenge today and for the future. In the last century many classes of effective antibacterials have been developed, so that upcoming resistances could be met with novel drugs of various compound classes. Meanwhile, there is a certain lack of research of the pharmaceutical companies, and thus there are missing developments of novel antibiotics. Gram-positive bacteria are the most important cause of clinical infections. The number of novel antibacterials in clinical trials is strongly restricted. There is an urgent need to find novel antibacterials. We used synthetic chemistry to build completely novel hybrid molecules of substituted indoles and benzothiophene. In a simple one-pot reaction, two novel types of thienocarbazoles were yielded. Both indole substituted compound classes have been evaluated as completely novel antibacterials against the Staphylococcus and Enterococcus species. The evaluated partly promising activities depend on the indole substituent type. First lead compounds have been evaluated within in vivo studies. They confirmed the in vitro results for the new classes of small-molecule antibacterials.}, language = {en} } @article{GomesWestermannSauerweinetal.2019, author = {Gomes, Sara F. Martins and Westermann, Alexander J. and Sauerwein, Till and Hertlein, Tobias and F{\"o}rstner, Konrad U. and Ohlsen, Knut and Metzger, Marco and Shusta, Eric V. and Kim, Brandon J. and Appelt-Menzel, Antje and Schubert-Unkmeir, Alexandra}, title = {Induced pluripotent stem cell-derived brain endothelial cells as a cellular model to study Neisseria meningitidis infection}, series = {Frontiers in Microbiology}, volume = {10}, journal = {Frontiers in Microbiology}, number = {1181}, doi = {10.3389/fmicb.2019.01181}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201562}, year = {2019}, abstract = {Meningococcal meningitis is a severe central nervous system infection that occurs when Neisseria meningitidis (Nm) penetrates brain endothelial cells (BECs) of the meningeal blood-cerebrospinal fluid barrier. As a human-specific pathogen, in vivo models are greatly limited and pose a significant challenge. In vitro cell models have been developed, however, most lack critical BEC phenotypes limiting their usefulness. Human BECs generated from induced pluripotent stem cells (iPSCs) retain BEC properties and offer the prospect of modeling the human-specific Nm interaction with BECs. Here, we exploit iPSC-BECs as a novel cellular model to study Nm host-pathogen interactions, and provide an overview of host responses to Nm infection. Using iPSC-BECs, we first confirmed that multiple Nm strains and mutants follow similar phenotypes to previously described models. The recruitment of the recently published pilus adhesin receptor CD147 underneath meningococcal microcolonies could be verified in iPSC-BECs. Nm was also observed to significantly increase the expression of pro-inflammatory and neutrophil-specific chemokines IL6, CXCL1, CXCL2, CXCL8, and CCL20, and the secretion of IFN-γ and RANTES. For the first time, we directly observe that Nm disrupts the three tight junction proteins ZO-1, Occludin, and Claudin-5, which become frayed and/or discontinuous in BECs upon Nm challenge. In accordance with tight junction loss, a sharp loss in trans-endothelial electrical resistance, and an increase in sodium fluorescein permeability and in bacterial transmigration, was observed. Finally, we established RNA-Seq of sorted, infected iPSC-BECs, providing expression data of Nm-responsive host genes. Altogether, this model provides novel insights into Nm pathogenesis, including an impact of Nm on barrier properties and tight junction complexes, and suggests that the paracellular route may contribute to Nm traversal of BECs.}, language = {en} } @article{WeidnerLardenoijeEijssenetal.2019, author = {Weidner, Magdalena T. and Lardenoije, Roy and Eijssen, Lars and Mogavero, Floriana and De Groodt, Lilian P. M. T. and Popp, Sandy and Palme, Rupert and F{\"o}rstner, Konrad U. and Strekalova, Tatyana and Steinbusch, Harry W. M. and Schmitt-B{\"o}hrer, Angelika G. and Glennon, Jeffrey C. and Waider, Jonas and van den Hove, Daniel L. A. and Lesch, Klaus-Peter}, title = {Identification of cholecystokinin by genome-wide profiling as potential mediator of serotonin-dependent behavioral effects of maternal separation in the amygdala}, series = {Frontiers in Neuroscience}, volume = {13}, journal = {Frontiers in Neuroscience}, doi = {10.3389/fnins.2019.00460}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201340}, pages = {460}, year = {2019}, abstract = {Converging evidence suggests a role of serotonin (5-hydroxytryptamine, 5-HT) and tryptophan hydroxylase 2 (TPH2), the rate-limiting enzyme of 5-HT synthesis in the brain, in modulating long-term, neurobiological effects of early-life adversity. Here, we aimed at further elucidating the molecular mechanisms underlying this interaction, and its consequences for socio-emotional behaviors, with a focus on anxiety and social interaction. In this study, adult, male Tph2 null mutant (Tph2\(^{-/-}\)) and heterozygous (Tph2\(^{+/-}\)) mice, and their wildtype littermates (Tph2\(^{+/+}\)) were exposed to neonatal, maternal separation (MS) and screened for behavioral changes, followed by genome-wide RNA expression and DNA methylation profiling. In Tph2\(^{-/-}\) mice, brain 5-HT deficiency profoundly affected socio-emotional behaviors, i.e., decreased avoidance of the aversive open arms in the elevated plus-maze (EPM) as well as decreased prosocial and increased rule breaking behavior in the resident-intruder test when compared to their wildtype littermates. Tph2\(^{+/-}\) mice showed an ambiguous profile with context-dependent, behavioral responses. In the EPM they showed similar avoidance of the open arm but decreased prosocial and increased rule breaking behavior in the resident-intruder test when compared to their wildtype littermates. Notably, MS effects on behavior were subtle and depended on the Tph2 genotype, in particular increasing the observed avoidance of EPM open arms in wildtype and Tph2\(^{+/-}\) mice when compared to their Tph2\(^{-/-}\) littermates. On the genomic level, the interaction of Tph2 genotype with MS differentially affected the expression of numerous genes, of which a subset showed an overlap with DNA methylation profiles at corresponding loci. Remarkably, changes in methylation nearby and expression of the gene encoding cholecystokinin, which were inversely correlated to each other, were associated with variations in anxiety-related phenotypes. In conclusion, next to various behavioral alterations, we identified gene expression and DNA methylation profiles to be associated with TPH2 inactivation and its interaction with MS, suggesting a gene-by-environment interaction-dependent, modulatory function of brain 5-HT availability.}, language = {en} } @article{PoppRamirezZavalaSchwanfelderetal.2019, author = {Popp, Christina and Ram{\´i}rez-Zavala, Bernardo and Schwanfelder, Sonja and Kr{\"u}ger, Ines and Morschh{\"a}user, Joachim}, title = {Evolution of fluconazole-resistant Candida albicans strains by drug-induced mating competence and parasexual recombination}, series = {mBio}, volume = {10}, journal = {mBio}, number = {1}, doi = {10.1128/mBio.02740-18}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200901}, pages = {e02740-18}, year = {2019}, abstract = {The clonal population structure of Candida albicans suggests that (para)sexual recombination does not play an important role in the lifestyle of this opportunistic fungal pathogen, an assumption that is strengthened by the fact that most C. albicans strains are heterozygous at the mating type locus (MTL) and therefore mating-incompetent. On the other hand, mating might occur within clonal populations and allow the combination of advantageous traits that were acquired by individual cells to adapt to adverse conditions. We have investigated if parasexual recombination may be involved in the evolution of highly drug-resistant strains exhibiting multiple resistance mechanisms against fluconazole, an antifungal drug that is commonly used to treat infections by C. albicans. Growth of strains that were heterozygous for MTL and different fluconazole resistance mutations in the presence of the drug resulted in the emergence of derivatives that had become homozygous for the mutated allele and the mating type locus and exhibited increased drug resistance. When MTLa/a and MTLα/α cells of these strains were mixed in all possible combinations, we could isolate mating products containing the genetic material from both parents. The initial mating products did not exhibit higher drug resistance than their parental strains, but further propagation under selective pressure resulted in the loss of the wild-type alleles and increased fluconazole resistance. Therefore, fluconazole treatment not only selects for resistance mutations but also promotes genomic alterations that confer mating competence, which allows cells in an originally clonal population to exchange individually acquired resistance mechanisms and generate highly drug-resistant progeny.}, language = {en} } @article{WestermannVenturiniSellinetal.2019, author = {Westermann, Alexander J. and Venturini, Elisa and Sellin, Mikael E. and F{\"o}rstner, Konrad U. and Hardt, Wolf-Dietrich and Vogel, J{\"o}rg}, title = {The major RNA-binding protein ProQ impacts virulence gene expression in Salmonella enterica serovar Typhimurium}, series = {mBio}, volume = {10}, journal = {mBio}, number = {1}, doi = {10.1128/mBio.02504-18}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-177722}, pages = {e02504-18}, year = {2019}, abstract = {FinO domain proteins such as ProQ of the model pathogen Salmonella enterica have emerged as a new class of major RNA-binding proteins in bacteria. ProQ has been shown to target hundreds of transcripts, including mRNAs from many virulence regions, but its role, if any, in bacterial pathogenesis has not been studied. Here, using a Dual RNA-seq approach to profile ProQ-dependent gene expression changes as Salmonella infects human cells, we reveal dysregulation of bacterial motility, chemotaxis, and virulence genes which is accompanied by altered MAPK (mitogen-activated protein kinase) signaling in the host. Comparison with the other major RNA chaperone in Salmonella, Hfq, reinforces the notion that these two global RNA-binding proteins work in parallel to ensure full virulence. Of newly discovered infection-associated ProQ-bound small noncoding RNAs (sRNAs), we show that the 3′UTR-derived sRNA STnc540 is capable of repressing an infection-induced magnesium transporter mRNA in a ProQ-dependent manner. Together, this comprehensive study uncovers the relevance of ProQ for Salmonella pathogenesis and highlights the importance of RNA-binding proteins in regulating bacterial virulence programs. IMPORTANCE The protein ProQ has recently been discovered as the centerpiece of a previously overlooked "third domain" of small RNA-mediated control of gene expression in bacteria. As in vitro work continues to reveal molecular mechanisms, it is also important to understand how ProQ affects the life cycle of bacterial pathogens as these pathogens infect eukaryotic cells. Here, we have determined how ProQ shapes Salmonella virulence and how the activities of this RNA-binding protein compare with those of Hfq, another central protein in RNA-based gene regulation in this and other bacteria. To this end, we apply global transcriptomics of pathogen and host cells during infection. In doing so, we reveal ProQ-dependent transcript changes in key virulence and host immune pathways. Moreover, we differentiate the roles of ProQ from those of Hfq during infection, for both coding and noncoding transcripts, and provide an important resource for those interested in ProQ-dependent small RNAs in enteric bacteria.}, language = {en} } @article{MottolaMorschhaeuser2019, author = {Mottola, Austin and Morschh{\"a}user, Joachim}, title = {An intragenic recombination event generates a Snf4-independent form of the essential protein kinase SNF1 in Candida albicans}, series = {mSphere}, volume = {4}, journal = {mSphere}, number = {3}, doi = {10.1128/mSphere.00352-19}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202170}, pages = {e00352-19}, year = {2019}, abstract = {The heterotrimeric protein kinase SNF1 plays a key role in the metabolic adaptation of the pathogenic yeast Candida albicans. It consists of the essential catalytic α-subunit Snf1, the γ-subunit Snf4, and one of the two β-subunits Kis1 and Kis2. Snf4 is required to release the N-terminal catalytic domain of Snf1 from autoinhibition by the C-terminal regulatory domain, and snf4Δ mutants cannot grow on carbon sources other than glucose. In a screen for suppressor mutations that restore growth of a snf4Δ mutant on alternative carbon sources, we isolated a mutant in which six amino acids between the N-terminal kinase domain and the C-terminal regulatory domain of Snf1 were deleted. The deletion was caused by an intragenic recombination event between two 8-bp direct repeats flanking six intervening codons. In contrast to truncated forms of Snf1 that contain only the kinase domain, the Snf4-independent Snf1\(^{Δ311 - 316}\) was fully functional and could replace wild-type Snf1 for normal growth, because it retained the ability to interact with the Kis1 and Kis2 β-subunits via its C-terminal domain. Indeed, the Snf4-independent Snf1\(^{Δ311 - 316}\) still required the β-subunits of the SNF1 complex to perform its functions and did not rescue the growth defects of kis1Δ mutants. Our results demonstrate that a preprogrammed in-frame deletion event within the SNF1 coding region can generate a mutated form of this essential kinase which abolishes autoinhibition and thereby overcomes growth deficiencies caused by a defect in the γ-subunit Snf4.}, language = {en} } @article{SanyalWallaschekGlassetal.2018, author = {Sanyal, Anirban and Wallaschek, Nina and Glass, Mandy and Flamand, Louis and Wight, Darren J. and Kaufer, Benedikt B.}, title = {The ND10 Complex Represses Lytic Human Herpesvirus 6A Replication and Promotes Silencing of the Viral Genome}, series = {Viruses}, volume = {10}, journal = {Viruses}, number = {8}, doi = {10.3390/v10080401}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-227337}, pages = {401, 1-11}, year = {2018}, abstract = {Human herpesvirus 6A (HHV-6A) replicates in peripheral blood mononuclear cells (PBMCs) and various T-cell lines in vitro. Intriguingly, the virus can also establish latency in these cells, but it remains unknown what influences the decision between lytic replication and the latency of the virus. Incoming virus genomes are confronted with the nuclear domain 10 (ND10) complex as part of an intrinsic antiviral response. Most herpesviruses can efficiently subvert ND10, but its role in HHV-6A infection remains poorly understood. In this study, we investigated if the ND10 complex affects HHV-6A replication and contributes to the silencing of the virus genome during latency. We could demonstrate that ND10 complex was not dissociated upon infection, while the number of ND10 bodies was reduced in lytically infected cells. Virus replication was significantly enhanced upon knock down of the ND10 complex using shRNAs against its major constituents promyelocytic leukemia protein (PML), hDaxx, and Sp100. In addition, we could demonstrate that viral genes are more efficiently silenced in the presence of a functional ND10 complex. Our data thereby provides the first evidence that the cellular ND10 complex plays an important role in suppressing HHV-6A lytic replication and the silencing of the virus genome in latently infected cells.}, language = {en} } @article{YuVogelFoerstner2018, author = {Yu, Sung-Huan and Vogel, J{\"o}rg and F{\"o}rstner, Konrad U.}, title = {ANNOgesic: a Swiss army knife for the RNA-seq based annotation of bacterial/archaeal genomes}, series = {GigaScience}, volume = {7}, journal = {GigaScience}, doi = {10.1093/gigascience/giy096}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-178942}, year = {2018}, abstract = {To understand the gene regulation of an organism of interest, a comprehensive genome annotation is essential. While some features, such as coding sequences, can be computationally predicted with high accuracy based purely on the genomic sequence, others, such as promoter elements or noncoding RNAs, are harder to detect. RNA sequencing (RNA-seq) has proven to be an efficient method to identify these genomic features and to improve genome annotations. However, processing and integrating RNA-seq data in order to generate high-resolution annotations is challenging, time consuming, and requires numerous steps. We have constructed a powerful and modular tool called ANNOgesic that provides the required analyses and simplifies RNA-seq-based bacterial and archaeal genome annotation. It can integrate data from conventional RNA-seq and differential RNA-seq and predicts and annotates numerous features, including small noncoding RNAs, with high precision. The software is available under an open source license (ISCL) at https://pypi.org/project/ANNOgesic/.}, language = {en} } @article{JarickBertscheStahletal.2018, author = {Jarick, Marcel and Bertsche, Ute and Stahl, Mark and Schultz, Daniel and Methling, Karen and Lalk, Michael and Stigloher, Christian and Steger, Mirco and Schlosser, Andreas and Ohlsen, Knut}, title = {The serine/threonine kinase Stk and the phosphatase Stp regulate cell wall synthesis in Staphylococcus aureus}, series = {Scientific Reports}, volume = {8}, journal = {Scientific Reports}, number = {13693}, doi = {10.1038/s41598-018-32109-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-177333}, year = {2018}, abstract = {The cell wall synthesis pathway producing peptidoglycan is a highly coordinated and tightly regulated process. Although the major components of bacterial cell walls have been known for decades, the complex regulatory network controlling peptidoglycan synthesis and many details of the cell division machinery are not well understood. The eukaryotic-like serine/threonine kinase Stk and the cognate phosphatase Stp play an important role in cell wall biosynthesis and drug resistance in S. aureus. We show that stp deletion has a pronounced impact on cell wall synthesis. Deletion of stp leads to a thicker cell wall and decreases susceptibility to lysostaphin. Stationary phase Δstp cells accumulate peptidoglycan precursors and incorporate higher amounts of incomplete muropeptides with non-glycine, monoglycine and monoalanine interpeptide bridges into the cell wall. In line with this cell wall phenotype, we demonstrate that the lipid II:glycine glycyltransferase FemX can be phosphorylated by the Ser/Thr kinase Stk in vitro. Mass spectrometric analyses identify Thr32, Thr36 and Ser415 as phosphoacceptors. The cognate phosphatase Stp dephosphorylates these phosphorylation sites. Moreover, Stk interacts with FemA and FemB, but is unable to phosphorylate them. Our data indicate that Stk and Stp modulate cell wall synthesis and cell division at several levels.}, language = {en} } @article{BarYosefGildorRamirezZavalaetal.2018, author = {Bar-Yosef, Hagit and Gildor, Tsvia and Ram{\´i}rez-Zavala, Bernardo and Schmauch, Christian and Weissman, Ziva and Pinsky, Mariel and Naddaf, Rawi and Morschh{\"a}user, Joachim and Arkowitz, Robert A. and Kornitzer, Daniel}, title = {A global analysis of kinase function in Candida albicans hyphal morphogenesis reveals a role for the endocytosis regulator Akl1}, series = {Frontiers in Cellular and Infection Microbiology}, volume = {8}, journal = {Frontiers in Cellular and Infection Microbiology}, issn = {2235-2988}, doi = {10.3389/fcimb.2018.00017}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197204}, year = {2018}, abstract = {The human pathogenic fungus Candida albicans can switch between yeast and hyphal morphologies as a function of environmental conditions and cellular physiology. The yeast-to-hyphae morphogenetic switch is activated by well-established, kinase-based signal transduction pathways that are induced by extracellular stimuli. In order to identify possible inhibitory pathways of the yeast-to-hyphae transition, we interrogated a collection of C. albicans protein kinases and phosphatases ectopically expressed under the regulation of the TETon promoter. Proportionately more phosphatases than kinases were identified that inhibited hyphal morphogenesis, consistent with the known role of protein phosphorylation in hyphal induction. Among the kinases, we identified AKL1 as a gene that significantly suppressed hyphal morphogenesis in serum. Akl1 specifically affected hyphal elongation rather than initiation: overexpression of AKL1 repressed hyphal growth, and deletion of AKL1 resulted in acceleration of the rate of hyphal elongation. Akl1 suppressed fluid-phase endocytosis, probably via Pan1, a putative clathrin-mediated endocytosis scaffolding protein. In the absence of Akl1, the Pan1 patches were delocalized from the sub-apical region, and fluid-phase endocytosis was intensified. These results underscore the requirement of an active endocytic pathway for hyphal morphogenesis. Furthermore, these results suggest that under standard conditions, endocytosis is rate-limiting for hyphal elongation.}, language = {en} } @article{FoerstnerReuscherHaberzettletal.2018, author = {F{\"o}rstner, Konrad U and Reuscher, Carina M and Haberzettl, Kerstin and Weber, Lennart and Klug, Gabriele}, title = {RNase E cleavage shapes the transcriptome of Rhodobacter sphaeroides and strongly impacts phototrophic growth}, series = {Life Science Alliance}, volume = {1}, journal = {Life Science Alliance}, number = {4}, doi = {10.26508/lsa.201800080}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-177139}, pages = {e201800080}, year = {2018}, abstract = {Bacteria adapt to changing environmental conditions by rapid changes in their transcriptome. This is achieved not only by adjusting rates of transcription but also by processing and degradation of RNAs. We applied TIER-Seq (transiently inactivating an endoribonuclease followed by RNA-Seq) for the transcriptome-wide identification of RNase E cleavage sites and of 5′ RNA ends, which are enriched when RNase E activity is reduced in Rhodobacter sphaeroides. These results reveal the importance of RNase E for the maturation and turnover of mRNAs, rRNAs, and sRNAs in this guanine-cytosine-rich α-proteobacterium, some of the latter have well-described functions in the oxidative stress response. In agreement with this, a role of RNase E in the oxidative stress response is demonstrated. A remarkably strong phenotype of a mutant with reduced RNase E activity was observed regarding the formation of photosynthetic complexes and phototrophic growth, whereas there was no effect on chemotrophic growth.}, language = {en} } @article{SunkavalliAguilarSilvaetal.2017, author = {Sunkavalli, Ushasree and Aguilar, Carmen and Silva, Ricardo Jorge and Sharan, Malvika and Cruz, Ana Rita and Tawk, Caroline and Maudet, Claire and Mano, Miguel and Eulalio, Ana}, title = {Analysis of host microRNA function uncovers a role for miR-29b-2-5p in Shigella capture by filopodia}, series = {PLoS Pathogens}, volume = {13}, journal = {PLoS Pathogens}, number = {4}, doi = {10.1371/journal.ppat.1006327}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158204}, pages = {e1006327}, year = {2017}, abstract = {MicroRNAs play an important role in the interplay between bacterial pathogens and host cells, participating as host defense mechanisms, as well as exploited by bacteria to subvert host cellular functions. Here, we show that microRNAs modulate infection by Shigella flexneri, a major causative agent of bacillary dysentery in humans. Specifically, we characterize the dual regulatory role of miR-29b-2-5p during infection, showing that this microRNA strongly favors Shigella infection by promoting both bacterial binding to host cells and intracellular replication. Using a combination of transcriptome analysis and targeted high-content RNAi screening, we identify UNC5C as a direct target of miR-29b-2-5p and show its pivotal role in the modulation of Shigella binding to host cells. MiR-29b-2-5p, through repression of UNC5C, strongly enhances filopodia formation thus increasing Shigella capture and promoting bacterial invasion. The increase of filopodia formation mediated by miR-29b-2-5p is dependent on RhoF and Cdc42 Rho-GTPases. Interestingly, the levels of miR-29b-2-5p, but not of other mature microRNAs from the same precursor, are decreased upon Shigella replication at late times post-infection, through degradation of the mature microRNA by the exonuclease PNPT1. While the relatively high basal levels of miR-29b-2-5p at the start of infection ensure efficient Shigella capture by host cell filopodia, dampening of miR-29b-2-5p levels later during infection may constitute a bacterial strategy to favor a balanced intracellular replication to avoid premature cell death and favor dissemination to neighboring cells, or alternatively, part of the host response to counteract Shigella infection. Overall, these findings reveal a previously unappreciated role of microRNAs, and in particular miR-29b-2-5p, in the interaction of Shigella with host cells.}, language = {en} } @article{HassanVasquezGuoLiangetal.2017, author = {Hassan, Musa A. and Vasquez, Juan J. and Guo-Liang, Chew and Meissner, Markus and Siegel, T. Nicolai}, title = {Comparative ribosome profiling uncovers a dominant role for translational control in \(Toxoplasma\) \(gondii\)}, series = {BMC Genomics}, volume = {18}, journal = {BMC Genomics}, doi = {10.1186/s12864-017-4362-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-172376}, year = {2017}, abstract = {Background The lytic cycle of the protozoan parasite \(Toxoplasma\) \(gondii\), which involves a brief sojourn in the extracellular space, is characterized by defined transcriptional profiles. For an obligate intracellular parasite that is shielded from the cytosolic host immune factors by a parasitophorous vacuole, the brief entry into the extracellular space is likely to exert enormous stress. Due to its role in cellular stress response, we hypothesize that translational control plays an important role in regulating gene expression in \(Toxoplasma\) during the lytic cycle. Unlike transcriptional profiles, insights into genome-wide translational profiles of \(Toxoplasma\) \(gondii\) are lacking. Methods We have performed genome-wide ribosome profiling, coupled with high throughput RNA sequencing, in intracellular and extracellular \(Toxoplasma\) \(gondii\) parasites to investigate translational control during the lytic cycle. Results Although differences in transcript abundance were mostly mirrored at the translational level, we observed significant differences in the abundance of ribosome footprints between the two parasite stages. Furthermore, our data suggest that mRNA translation in the parasite is potentially regulated by mRNA secondary structure and upstream open reading frames. Conclusion We show that most of the \(Toxoplasma\) genes that are dysregulated during the lytic cycle are translationally regulated.}, language = {en} } @article{SchielmannSzwedaGucwaetal.2017, author = {Schielmann, Marta and Szweda, Piotr and Gucwa, Katarzyna and Kawczyński, Marcin and Milewska, Maria J. and Martynow, Dorota and Morschh{\"a}user, Joachim and Milewski, Sławomir}, title = {Transport deficiency is the molecular basis of \(Candida\) \(albicans\) resistance to antifungal oligopeptides}, series = {Frontiers in Microbiology}, volume = {8}, journal = {Frontiers in Microbiology}, doi = {10.3389/fmicb.2017.02154}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-173245}, year = {2017}, abstract = {Oligopeptides incorporating \(N3\)-(4-methoxyfumaroyl)-L-2,3-diaminopropanoic acid (FMDP), an inhibitor of glucosamine-6-phosphate synthase, exhibited growth inhibitory activity against \(Candida\) \(albicans\), with minimal inhibitory concentration values in the 0.05-50 μg mL\(^{-1}\) range. Uptake by the peptide permeases was found to be the main factor limiting an anticandidal activity of these compounds. Di- and tripeptide containing FMDP (F2 and F3) were transported by Ptr2p/Ptr22p peptide transporters (PTR) and FMDP-containing hexa-, hepta-, and undecapeptide (F6, F7, and F11) were taken up by the oligopeptide transporters (OPT) oligopeptide permeases, preferably by Opt2p/Opt3p. A phenotypic, apparent resistance of \(C. albicans\) to FMDP-oligopeptides transported by OPT permeases was triggered by the environmental factors, whereas resistance to those taken up by the PTR system had a genetic basis. Anticandidal activity of longer FMDP-oligopeptides was strongly diminished in minimal media containing easily assimilated ammonium sulfate or L-glutamine as the nitrogen source, both known to downregulate expression of the OPT genes. All FMDP-oligopeptides tested were more active at lower pH and this effect was slightly more remarkable for peptides F6, F7, and F11, compared to F2 and F3. Formation of isolated colonies was observed inside the growth inhibitory zones induced by F2 and F3 but not inside those induced by F6, F7, and F11. The vast majority (98\%) of those colonies did not originate from truly resistant cells. The true resistance of 2\% of isolates was due to the impaired transport of di- and to a lower extent, tripeptides. The resistant cells did not exhibit a lower expression of \(PTR2\), \(PTR22\), or \(OPT1-3\) genes, but mutations in the \(PTR2\) gene resulting in T422H, A320S, D119V, and A320S substitutions in the amino acid sequence of Ptr2p were found.}, language = {en} } @article{BalasubramanianOthmanKampiketal.2017, author = {Balasubramanian, Srikkanth and Othman, Eman M. and Kampik, Daniel and Stopper, Helga and Hentschel, Ute and Ziebuhr, Wilma and Oelschlaeger, Tobias A. and Abdelmohsen, Usama R.}, title = {Marine sponge-derived Streptomyces sp SBT343 extract inhibits staphylococcal biofilm formation}, series = {Frontiers in Microbiology}, volume = {8}, journal = {Frontiers in Microbiology}, doi = {10.3389/fmicb.2017.00236}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-171844}, year = {2017}, abstract = {Staphylococcus epidermidis and Staphylococcus aureus are opportunistic pathogens that cause nosocomial and chronic biofilm-associated infections. Indwelling medical devices and contact lenses are ideal ecological niches for formation of staphylococcal biofilms. Bacteria within biofilms are known to display reduced susceptibilities to antimicrobials and are protected from the host immune system. High rates of acquired antibiotic resistances in staphylococci and other biofilm-forming bacteria further hamper treatment options and highlight the need for new anti-biofilm strategies. Here, we aimed to evaluate the potential of marine sponge-derived actinomycetes in inhibiting biofilm formation of several strains of S. epidermidis, S. aureus, and Pseudomonas aeruginosa. Results from in vitro biofilm-formation assays, as well as scanning electron and confocal microscopy, revealed that an organic extract derived from the marine sponge-associated bacterium Streptomyces sp. SBT343 significantly inhibited staphylococcal biofilm formation on polystyrene, glass and contact lens surfaces, without affecting bacterial growth. The extract also displayed similar antagonistic effects towards the biofilm formation of other S. epidermidis and S. aureus strains tested but had no inhibitory effects towards Pseudomonas biofilms. Interestingly the extract, at lower effective concentrations, did not exhibit cytotoxic effects on mouse fibroblast, macrophage and human corneal epithelial cell lines. Chemical analysis by High Resolution Fourier Transform Mass Spectrometry (HRMS) of the Streptomyces sp. SBT343 extract proportion revealed its chemical richness and complexity. Preliminary physico-chemical characterization of the extract highlighted the heat-stable and non-proteinaceous nature of the active component(s). The combined data suggest that the Streptomyces sp. SBT343 extract selectively inhibits staphylococcal biofilm formation without interfering with bacterial cell viability. Due to absence of cell toxicity, the extract might represent a good starting material to develop a future remedy to block staphylococcal biofilm formation on contact lenses and thereby to prevent intractable contact lens-mediated ocular infections.}, language = {en} } @article{WestermannBarquistVogel2017, author = {Westermann, Alexander J. and Barquist, Lars and Vogel, J{\"o}rg}, title = {Resolving host-pathogen interactions by dual RNA-seq}, series = {PLoS Pathogens}, volume = {13}, journal = {PLoS Pathogens}, number = {2}, doi = {10.1371/journal.ppat.1006033}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-171921}, year = {2017}, abstract = {The transcriptome is a powerful proxy for the physiological state of a cell, healthy or diseased. As a result, transcriptome analysis has become a key tool in understanding the molecular changes that accompany bacterial infections of eukaryotic cells. Until recently, such transcriptomic studies have been technically limited to analyzing mRNA expression changes in either the bacterial pathogen or the infected eukaryotic host cell. However, the increasing sensitivity of high-throughput RNA sequencing now enables "dual RNA-seq" studies, simultaneously capturing all classes of coding and noncoding transcripts in both the pathogen and the host. In the five years since the concept of dual RNA-seq was introduced, the technique has been applied to a range of infection models. This has not only led to a better understanding of the physiological changes in pathogen and host during the course of an infection but has also revealed hidden molecular phenotypes of virulence-associated small noncoding RNAs that were not visible in standard infection assays. Here, we use the knowledge gained from these recent studies to suggest experimental and computational guidelines for the design of future dual RNA-seq studies. We conclude this review by discussing prospective applications of the technique.}, language = {en} } @article{BoehmTorsinTintetal.2017, author = {B{\"o}hm, Lena and Torsin, Sanda and Tint, Su Hlaing and Eckstein, Marie Therese and Ludwig, Tobias and P{\´e}rez, J. Christian}, title = {The yeast form of the fungus Candida albicans promotes persistence in the gut of gnotobiotic mice}, series = {PLoS Pathogens}, volume = {13}, journal = {PLoS Pathogens}, number = {10}, doi = {10.1371/journal.ppat.1006699}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159120}, pages = {e1006699}, year = {2017}, abstract = {Many microorganisms that cause systemic, life-threatening infections in humans reside as harmless commensals in our digestive tract. Yet little is known about the biology of these microbes in the gut. Here, we visualize the interface between the human commensal and pathogenic fungus Candida albicans and the intestine of mice, a surrogate host. Because the indigenous mouse microbiota restricts C. albicans settlement, we compared the patterns of colonization in the gut of germ free and antibiotic-treated conventionally raised mice. In contrast to the heterogeneous morphologies found in the latter, we establish that in germ free animals the fungus almost uniformly adopts the yeast cell form, a proxy of its commensal state. By screening a collection of C. albicans transcription regulator deletion mutants in gnotobiotic mice, we identify several genes previously unknown to contribute to in vivo fitness. We investigate three of these regulators—ZCF8, ZFU2 and TRY4—and show that indeed they favor the yeast form over other morphologies. Consistent with this finding, we demonstrate that genetically inducing non-yeast cell morphologies is detrimental to the fitness of C. albicans in the gut. Furthermore, the identified regulators promote adherence of the fungus to a surface covered with mucin and to mucus-producing intestinal epithelial cells. In agreement with this result, histology sections indicate that C. albicans dwells in the murine gut in close proximity to the mucus layer. Thus, our findings reveal a set of regulators that endows C. albicans with the ability to endure in the intestine through multiple mechanisms.}, language = {en} } @article{AshrafYasrebiHertleinetal.2017, author = {Ashraf, Kerolos and Yasrebi, Kaveh and Hertlein, Tobias and Ohlsen, Knut and Lalk, Michael and Hilgeroth, Andreas}, title = {Novel effective small-molecule antibacterials against \(Enterococcus\) strains}, series = {Molecules}, volume = {22}, journal = {Molecules}, number = {12}, doi = {10.3390/molecules22122193}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-172628}, year = {2017}, abstract = {\(Enterococcus\) species cause increasing numbers of infections in hospitals. They contribute to the increasing mortality rates, mostly in patients with comorbidities, who suffer from severe diseases. \(Enterococcus\) resistances against most antibiotics have been described, including novel antibiotics. Therefore, there is an ongoing demand for novel types of antibiotics that may overcome bacterial resistances. We discovered a novel class of antibiotics resulting from a simple one-pot reaction of indole and \(o\)-phthaldialdehyde. Differently substituted indolyl benzocarbazoles were yielded. Both the indole substitution and the positioning at the molecular scaffold influence the antibacterial activity towards the various strains of \(Enterococcus\) species with the highest relevance to nosocomial infections. Structure-activity relationships are discussed, and the first lead compounds were identified as also being effective in the case of a vancomycin resistance.}, language = {en} } @article{GarciaBetancurGoniMorenoHorgeretal.2017, author = {Garc{\´i}a-Betancur, Juan-Carlos and Go{\~n}i-Moreno, Angel and Horger, Thomas and Schott, Melanie and Sharan, Malvika and Eikmeier, Julian and Wohlmuth, Barbara and Zernecke, Alma and Ohlsen, Knut and Kuttler, Christina and Lopez, Daniel}, title = {Cell differentiation defines acute and chronic infection cell types in Staphylococcus aureus}, series = {eLife}, volume = {6}, journal = {eLife}, number = {e28023}, doi = {10.7554/eLife.28023}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170346}, year = {2017}, abstract = {A central question to biology is how pathogenic bacteria initiate acute or chronic infections. Here we describe a genetic program for cell-fate decision in the opportunistic human pathogen Staphylococcus aureus, which generates the phenotypic bifurcation of the cells into two genetically identical but different cell types during the course of an infection. Whereas one cell type promotes the formation of biofilms that contribute to chronic infections, the second type is planktonic and produces the toxins that contribute to acute bacteremia. We identified a bimodal switch in the agr quorum sensing system that antagonistically regulates the differentiation of these two physiologically distinct cell types. We found that extracellular signals affect the behavior of the agr bimodal switch and modify the size of the specialized subpopulations in specific colonization niches. For instance, magnesium-enriched colonization niches causes magnesium binding to S. aureusteichoic acids and increases bacterial cell wall rigidity. This signal triggers a genetic program that ultimately downregulates the agr bimodal switch. Colonization niches with different magnesium concentrations influence the bimodal system activity, which defines a distinct ratio between these subpopulations; this in turn leads to distinct infection outcomes in vitro and in an in vivo murine infection model. Cell differentiation generates physiological heterogeneity in clonal bacterial infections and helps to determine the distinct infection types.}, language = {en} } @article{TawkSharanEulalioetal.2017, author = {Tawk, Caroline and Sharan, Malvika and Eulalio, Ana and Vogel, J{\"o}rg}, title = {A systematic analysis of the RNA-targeting potential of secreted bacterial effector proteins}, series = {Scientific Reports}, volume = {7}, journal = {Scientific Reports}, doi = {10.1038/s41598-017-09527-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158815}, pages = {9328}, year = {2017}, abstract = {Many pathogenic bacteria utilize specialized secretion systems to deliver proteins called effectors into eukaryotic cells for manipulation of host pathways. The vast majority of known effector targets are host proteins, whereas a potential targeting of host nucleic acids remains little explored. There is only one family of effectors known to target DNA directly, and effectors binding host RNA are unknown. Here, we take a two-pronged approach to search for RNA-binding effectors, combining biocomputational prediction of RNA-binding domains (RBDs) in a newly assembled comprehensive dataset of bacterial secreted proteins, and experimental screening for RNA binding in mammalian cells. Only a small subset of effectors were predicted to carry an RBD, indicating that if RNA targeting was common, it would likely involve new types of RBDs. Our experimental evaluation of effectors with predicted RBDs further argues for a general paucity of RNA binding activities amongst bacterial effectors. We obtained evidence that PipB2 and Lpg2844, effector proteins of Salmonella and Legionella species, respectively, may harbor novel biochemical activities. Our study presenting the first systematic evaluation of the RNA-targeting potential of bacterial effectors offers a basis for discussion of whether or not host RNA is a prominent target of secreted bacterial proteins.}, language = {en} } @article{MielichSuessWagnerMietrachetal.2017, author = {Mielich-S{\"u}ss, Benjamin and Wagner, Rabea M. and Mietrach, Nicole and Hertlein, Tobias and Marincola, Gabriella and Ohlsen, Knut and Geibel, Sebastian and Lopez, Daniel}, title = {Flotillin scaffold activity contributes to type VII secretion system assembly in Staphylococcus aureus}, series = {PLoS Pathogens}, volume = {13}, journal = {PLoS Pathogens}, number = {11}, doi = {10.1371/journal.ppat.1006728}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170035}, pages = {e1006728}, year = {2017}, abstract = {Scaffold proteins are ubiquitous chaperones that promote efficient interactions between partners of multi-enzymatic protein complexes; although they are well studied in eukaryotes, their role in prokaryotic systems is poorly understood. Bacterial membranes have functional membrane microdomains (FMM), a structure homologous to eukaryotic lipid rafts. Similar to their eukaryotic counterparts, bacterial FMM harbor a scaffold protein termed flotillin that is thought to promote interactions between proteins spatially confined to the FMM. Here we used biochemical approaches to define the scaffold activity of the flotillin homolog FloA of the human pathogen Staphylococcus aureus, using assembly of interacting protein partners of the type VII secretion system (T7SS) as a case study. Staphylococcus aureus cells that lacked FloA showed reduced T7SS function, and thus reduced secretion of T7SS-related effectors, probably due to the supporting scaffold activity of flotillin. We found that the presence of flotillin mediates intermolecular interactions of T7SS proteins. We tested several small molecules that interfere with flotillin scaffold activity, which perturbed T7SS activity in vitro and in vivo. Our results suggest that flotillin assists in the assembly of S. aureus membrane components that participate in infection and influences the infective potential of this pathogen.}, language = {en} } @article{HampeFriedmanEdgertonetal.2017, author = {Hampe, Irene A. I. and Friedman, Justin and Edgerton, Mira and Morschh{\"a}user, Joachim}, title = {An acquired mechanism of antifungal drug resistance simultaneously enables Candida albicans to escape from intrinsic host defenses}, series = {PLoS Pathogens}, volume = {13}, journal = {PLoS Pathogens}, number = {9}, doi = {10.1371/journal.ppat.1006655}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158883}, pages = {e1006655}, year = {2017}, abstract = {The opportunistic fungal pathogen Candida albicans frequently produces genetically altered variants to adapt to environmental changes and new host niches in the course of its life-long association with the human host. Gain-of-function mutations in zinc cluster transcription factors, which result in the constitutive upregulation of their target genes, are a common cause of acquired resistance to the widely used antifungal drug fluconazole, especially during long-term therapy of oropharyngeal candidiasis. In this study, we investigated if C. albicans also can develop resistance to the antimicrobial peptide histatin 5, which is secreted in the saliva of humans to protect the oral mucosa from pathogenic microbes. As histatin 5 has been shown to be transported out of C. albicans cells by the Flu1 efflux pump, we screened a library of C. albicans strains that contain artificially activated forms of all zinc cluster transcription factors of this fungus for increased FLU1 expression. We found that a hyperactive Mrr1, which confers fluconazole resistance by upregulating the multidrug efflux pump MDR1 and other genes, also causes FLU1 overexpression. Similarly to the artificially activated Mrr1, naturally occurring gain-of-function mutations in this transcription factor also caused FLU1 upregulation and increased histatin 5 resistance. Surprisingly, however, Mrr1-mediated histatin 5 resistance was mainly caused by the upregulation of MDR1 instead of FLU1, revealing a previously unrecognized function of the Mdr1 efflux pump. Fluconazole-resistant clinical C. albicans isolates with different Mrr1 gain-of-function mutations were less efficiently killed by histatin 5, and this phenotype was reverted when MRR1 was deleted. Therefore, antimycotic therapy can promote the evolution of strains that, as a consequence of drug resistance mutations, simultaneously have acquired increased resistance against an innate host defense mechanism and are thereby better adapted to certain host niches.}, language = {en} } @article{SharanFoerstnerEulalioetal.2017, author = {Sharan, Malvika and F{\"o}rstner, Konrad U. and Eulalio, Ana and Vogel, J{\"o}rg}, title = {APRICOT: an integrated computational pipeline for the sequence-based identification and characterization of RNA-binding proteins}, series = {Nucleic Acids Research}, volume = {45}, journal = {Nucleic Acids Research}, number = {11}, doi = {10.1093/nar/gkx137}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-157963}, pages = {e96}, year = {2017}, abstract = {RNA-binding proteins (RBPs) have been established as core components of several post-transcriptional gene regulation mechanisms. Experimental techniques such as cross-linking and co-immunoprecipitation have enabled the identification of RBPs, RNA-binding domains (RBDs) and their regulatory roles in the eukaryotic species such as human and yeast in large-scale. In contrast, our knowledge of the number and potential diversity of RBPs in bacteria is poorer due to the technical challenges associated with the existing global screening approaches. We introduce APRICOT, a computational pipeline for the sequence-based identification and characterization of proteins using RBDs known from experimental studies. The pipeline identifies functional motifs in protein sequences using position-specific scoring matrices and Hidden Markov Models of the functional domains and statistically scores them based on a series of sequence-based features. Subsequently, APRICOT identifies putative RBPs and characterizes them by several biological properties. Here we demonstrate the application and adaptability of the pipeline on large-scale protein sets, including the bacterial proteome of Escherichia coli. APRICOT showed better performance on various datasets compared to other existing tools for the sequence-based prediction of RBPs by achieving an average sensitivity and specificity of 0.90 and 0.91 respectively. The command-line tool and its documentation are available at https://pypi.python.org/pypi/bio-apricot.}, language = {en} } @article{HeidrichBauriedlBarquistetal.2017, author = {Heidrich, Nadja and Bauriedl, Saskia and Barquist, Lars and Li, Lei and Schoen, Christoph and Vogel, J{\"o}rg}, title = {The primary transcriptome of Neisseria meningitidis and its interaction with the RNA chaperone Hfq}, series = {Nucleic Acids Research}, volume = {45}, journal = {Nucleic Acids Research}, number = {10}, doi = {10.1093/nar/gkx168}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170828}, pages = {6147-6167}, year = {2017}, abstract = {Neisseria meningitidis is a human commensal that can also cause life-threatening meningitis and septicemia. Despite growing evidence for RNA-based regulation in meningococci, their transcriptome structure and output of regulatory small RNAs (sRNAs) are incompletely understood. Using dRNA-seq, we have mapped at single-nucleotide resolution the primary transcriptome of N. meningitidis strain 8013. Annotation of 1625 transcriptional start sites defines transcription units for most protein-coding genes but also reveals a paucity of classical σ70-type promoters, suggesting the existence of activators that compensate for the lack of -35 consensus sequences in N. meningitidis. The transcriptome maps also reveal 65 candidate sRNAs, a third of which were validated by northern blot analysis. Immunoprecipitation with the RNA chaperone Hfq drafts an unexpectedly large post-transcriptional regulatory network in this organism, comprising 23 sRNAs and hundreds of potential mRNA targets. Based on this data, using a newly developed gfp reporter system we validate an Hfq-dependent mRNA repression of the putative colonization factor PrpB by the two trans-acting sRNAs RcoF1/2. Our genome-wide RNA compendium will allow for a better understanding of meningococcal transcriptome organization and riboregulation with implications for colonization of the human nasopharynx.}, language = {en} } @article{LavyshSokolovaSlashchevaetal.2017, author = {Lavysh, Daria and Sokolova, Maria and Slashcheva, Marina and F{\"o}rstner, Konrad U. and Severinov, Konstantin}, title = {Transcription profiling of "bacillus subtilis" cells infected with AR9, a giant phage encoding two multisubunit RNA polymerases}, series = {mBio}, volume = {8}, journal = {mBio}, number = {1}, doi = {10.1128/mBio.02041-16}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-181810}, year = {2017}, abstract = {Bacteriophage AR9 is a recently sequenced jumbo phage that encodes two multisubunit RNA polymerases. Here we investigated the AR9 transcription strategy and the effect of AR9 infection on the transcription of its host, Bacillus subtilis. Analysis of whole-genome transcription revealed early, late, and continuously expressed AR9 genes. Alignment of sequences upstream of the 5′ ends of AR9 transcripts revealed consensus sequences that define early and late phage promoters. Continuously expressed AR9 genes have both early and late promoters in front of them. Early AR9 transcription is independent of protein synthesis and must be determined by virion RNA polymerase injected together with viral DNA. During infection, the overall amount of host mRNAs is significantly decreased. Analysis of relative amounts of host transcripts revealed notable differences in the levels of some mRNAs. The physiological significance of up- or downregulation of host genes for AR9 phage infection remains to be established. AR9 infection is significantly affected by rifampin, an inhibitor of host RNA polymerase transcription. The effect is likely caused by the antibiotic-induced killing of host cells, while phage genome transcription is solely performed by viral RNA polymerases.}, language = {en} } @article{BlaettnerDasPaprotkaetal.2016, author = {Bl{\"a}ttner, Sebastian and Das, Sudip and Paprotka, Kerstin and Eilers, Ursula and Krischke, Markus and Kretschmer, Dorothee and Remmele, Christian W. and Dittrich, Marcus and M{\"u}ller, Tobias and Schuelein-Voelk, Christina and Hertlein, Tobias and Mueller, Martin J. and Huettel, Bruno and Reinhardt, Richard and Ohlsen, Knut and Rudel, Thomas and Fraunholz, Martin J.}, title = {Staphylococcus aureus Exploits a Non-ribosomal Cyclic Dipeptide to Modulate Survival within Epithelial Cells and Phagocytes}, series = {PLoS Pathogens}, volume = {12}, journal = {PLoS Pathogens}, number = {9}, doi = {10.1371/journal.ppat.1005857}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-180380}, year = {2016}, abstract = {Community-acquired (CA) Staphylococcus aureus cause various diseases even in healthy individuals. Enhanced virulence of CA-strains is partly attributed to increased production of toxins such as phenol-soluble modulins (PSM). The pathogen is internalized efficiently by mammalian host cells and intracellular S. aureus has recently been shown to contribute to disease. Upon internalization, cytotoxic S. aureus strains can disrupt phagosomal membranes and kill host cells in a PSM-dependent manner. However, PSM are not sufficient for these processes. Here we screened for factors required for intracellular S. aureus virulence. We infected escape reporter host cells with strains from an established transposon mutant library and detected phagosomal escape rates using automated microscopy. We thereby, among other factors, identified a non-ribosomal peptide synthetase (NRPS) to be required for efficient phagosomal escape and intracellular survival of S. aureus as well as induction of host cell death. By genetic complementation as well as supplementation with the synthetic NRPS product, the cyclic dipeptide phevalin, wild-type phenotypes were restored. We further demonstrate that the NRPS is contributing to virulence in a mouse pneumonia model. Together, our data illustrate a hitherto unrecognized function of the S. aureus NRPS and its dipeptide product during S. aureus infection.}, language = {en} } @article{DingemansMonsieursYuetal.2016, author = {Dingemans, Josef and Monsieurs, Pieter and Yu, Sung-Huan and Crabb{\´e}, Aur{\´e}lie and F{\"o}rstner, Konrad U. and Malfroot, Anne and Cornelis, Pierre and Van Houdt, Rob}, title = {Effect of Shear Stress on Pseudomonas aeruginosa Isolated from the Cystic Fibrosis Lung}, series = {mBio}, volume = {7}, journal = {mBio}, number = {4}, doi = {10.1128/mBio.00813-16}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165821}, pages = {e00813-16}, year = {2016}, abstract = {Chronic colonization of the lungs by Pseudomonas aeruginosa is one of the major causes of morbidity and mortality in cystic fibrosis (CF) patients. To gain insights into the characteristic biofilm phenotype of P. aeruginosa in the CF lungs, mimicking the CF lung environment is critical. We previously showed that growth of the non-CF-adapted P. aeruginosa PAO1 strain in a rotating wall vessel, a device that simulates the low fluid shear (LS) conditions present in the CF lung, leads to the formation of in-suspension, self-aggregating biofilms. In the present study, we determined the phenotypic and transcriptomic changes associated with the growth of a highly adapted, transmissible P. aeruginosa CF strain in artificial sputum medium under LS conditions. Robust self-aggregating biofilms were observed only under LS conditions. Growth under LS conditions resulted in the upregulation of genes involved in stress response, alginate biosynthesis, denitrification, glycine betaine biosynthesis, glycerol metabolism, and cell shape maintenance, while genes involved in phenazine biosynthesis, type VI secretion, and multidrug efflux were downregulated. In addition, a number of small RNAs appeared to be involved in the response to shear stress. Finally, quorum sensing was found to be slightly but significantly affected by shear stress, resulting in higher production of autoinducer molecules during growth under high fluid shear (HS) conditions. In summary, our study revealed a way to modulate the behavior of a highly adapted P. aeruginosa CF strain by means of introducing shear stress, driving it from a biofilm lifestyle to a more planktonic lifestyle.}, language = {en} } @article{FroehlichHanekePapenfortetal.2016, author = {Fr{\"o}hlich, Kathrin S. and Haneke, Katharina and Papenfort, Kai and Vogel, J{\"o}rg}, title = {The target spectrum of SdsR small RNA in Salmonella}, series = {Nucleic Acids Research}, volume = {44}, journal = {Nucleic Acids Research}, number = {21}, doi = {10.1093/nar/gkw632}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-175365}, pages = {10406-10422}, year = {2016}, abstract = {Model enteric bacteria such as Escherichia coli and Salmonella enterica express hundreds of small non-coding RNAs (sRNAs), targets for most of which are yet unknown. Some sRNAs are remarkably well conserved, indicating that they serve cellular functions that go beyond the necessities of a single species. One of these 'core sRNAs' of largely unknown function is the abundant ∼100-nucleotide SdsR sRNA which is transcribed by the general stress σ-factor, σ\(^{S}\) and accumulates in stationary phase. In Salmonella, SdsR was known to inhibit the synthesis of the species-specific porin, OmpD. However, sdsR genes are present in almost all enterobacterial genomes, suggesting that additional, conserved targets of this sRNA must exist. Here, we have combined SdsR pulse-expression with whole genome transcriptomics to discover 20 previously unknown candidate targets of SdsR which include mRNAs coding for physiologically important regulators such as the carbon utilization regulator, CRP, the nucleoid-associated chaperone, StpA and the antibiotic resistance transporter, TolC. Processing of SdsR by RNase E results in two cellular SdsR variants with distinct target spectra. While the overall physiological role of this orphan core sRNA remains to be fully understood, the new SdsR targets present valuable leads to determine sRNA functions in resting bacteria.}, language = {en} } @article{WheelerBarquistKingsleyetal.2016, author = {Wheeler, Nicole E. and Barquist, Lars and Kingsley, Robert A. and Gardner, Paul P.}, title = {A profile-based method for identifying functional divergence of orthologous genes in bacterial genomes}, series = {Bioinformatics}, volume = {32}, journal = {Bioinformatics}, number = {23}, doi = {10.1093/bioinformatics/btw518}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-186502}, pages = {3566-3574}, year = {2016}, abstract = {Motivation: Next generation sequencing technologies have provided us with a wealth of information on genetic variation, but predi cting the functional significance of this variation is a difficult task. While many comparative genomics studies have focused on gene flux and large scale changes, relatively little attention has been paid to quantifying the effects of single nucleotide polymorphisms and indels on protein function, particularly in bacterial genomics. Results: We present a hidden Markov model based approach we call delta-bitscore (DBS) for identifying orthologous proteins that have diverged at the amino acid sequence level in a way that is likely to impact biological function. We benchmark this approach with several widely used datasets and apply it to a proof-of-concept study of orthologous proteomes in an investigation of host adaptation in Salmonella enterica. We highlight the value of the method in identifying functional divergence of genes, and suggest that this tool may be a better approach than the commonly used dN/dS metric for identifying functionally significant genetic changes occurring in recently diverged organisms.}, language = {en} } @article{JiangOronClarketal.2016, author = {Jiang, Yuxiang and Oron, Tal Ronnen and Clark, Wyatt T. and Bankapur, Asma R. and D'Andrea, Daniel and Lepore, Rosalba and Funk, Christopher S. and Kahanda, Indika and Verspoor, Karin M. and Ben-Hur, Asa and Koo, Da Chen Emily and Penfold-Brown, Duncan and Shasha, Dennis and Youngs, Noah and Bonneau, Richard and Lin, Alexandra and Sahraeian, Sayed M. E. and Martelli, Pier Luigi and Profiti, Giuseppe and Casadio, Rita and Cao, Renzhi and Zhong, Zhaolong and Cheng, Jianlin and Altenhoff, Adrian and Skunca, Nives and Dessimoz, Christophe and Dogan, Tunca and Hakala, Kai and Kaewphan, Suwisa and Mehryary, Farrokh and Salakoski, Tapio and Ginter, Filip and Fang, Hai and Smithers, Ben and Oates, Matt and Gough, Julian and T{\"o}r{\"o}nen, Petri and Koskinen, Patrik and Holm, Liisa and Chen, Ching-Tai and Hsu, Wen-Lian and Bryson, Kevin and Cozzetto, Domenico and Minneci, Federico and Jones, David T. and Chapman, Samuel and BKC, Dukka and Khan, Ishita K. and Kihara, Daisuke and Ofer, Dan and Rappoport, Nadav and Stern, Amos and Cibrian-Uhalte, Elena and Denny, Paul and Foulger, Rebecca E. and Hieta, Reija and Legge, Duncan and Lovering, Ruth C. and Magrane, Michele and Melidoni, Anna N. and Mutowo-Meullenet, Prudence and Pichler, Klemens and Shypitsyna, Aleksandra and Li, Biao and Zakeri, Pooya and ElShal, Sarah and Tranchevent, L{\´e}on-Charles and Das, Sayoni and Dawson, Natalie L. and Lee, David and Lees, Jonathan G. and Sillitoe, Ian and Bhat, Prajwal and Nepusz, Tam{\´a}s and Romero, Alfonso E. and Sasidharan, Rajkumar and Yang, Haixuan and Paccanaro, Alberto and Gillis, Jesse and Sede{\~n}o-Cort{\´e}s, Adriana E. and Pavlidis, Paul and Feng, Shou and Cejuela, Juan M. and Goldberg, Tatyana and Hamp, Tobias and Richter, Lothar and Salamov, Asaf and Gabaldon, Toni and Marcet-Houben, Marina and Supek, Fran and Gong, Qingtian and Ning, Wei and Zhou, Yuanpeng and Tian, Weidong and Falda, Marco and Fontana, Paolo and Lavezzo, Enrico and Toppo, Stefano and Ferrari, Carlo and Giollo, Manuel and Piovesan, Damiano and Tosatto, Silvio C. E. and del Pozo, Angela and Fern{\´a}ndez, Jos{\´e} M. and Maietta, Paolo and Valencia, Alfonso and Tress, Michael L. and Benso, Alfredo and Di Carlo, Stefano and Politano, Gianfranco and Savino, Alessandro and Rehman, Hafeez Ur and Re, Matteo and Mesiti, Marco and Valentini, Giorgio and Bargsten, Joachim W. and van Dijk, Aalt D. J. and Gemovic, Branislava and Glisic, Sanja and Perovic, Vladmir and Veljkovic, Veljko and Almeida-e-Silva, Danillo C. and Vencio, Ricardo Z. N. and Sharan, Malvika and Vogel, J{\"o}rg and Kansakar, Lakesh and Zhang, Shanshan and Vucetic, Slobodan and Wang, Zheng and Sternberg, Michael J. E. and Wass, Mark N. and Huntley, Rachael P. and Martin, Maria J. and O'Donovan, Claire and Robinson, Peter N. and Moreau, Yves and Tramontano, Anna and Babbitt, Patricia C. and Brenner, Steven E. and Linial, Michal and Orengo, Christine A. and Rost, Burkhard and Greene, Casey S. and Mooney, Sean D. and Friedberg, Iddo and Radivojac, Predrag and Veljkovic, Nevena}, title = {An expanded evaluation of protein function prediction methods shows an improvement in accuracy}, series = {Genome Biology}, volume = {17}, journal = {Genome Biology}, number = {184}, doi = {10.1186/s13059-016-1037-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166293}, year = {2016}, abstract = {Background A major bottleneck in our understanding of the molecular underpinnings of life is the assignment of function to proteins. While molecular experiments provide the most reliable annotation of proteins, their relatively low throughput and restricted purview have led to an increasing role for computational function prediction. However, assessing methods for protein function prediction and tracking progress in the field remain challenging. Results We conducted the second critical assessment of functional annotation (CAFA), a timed challenge to assess computational methods that automatically assign protein function. We evaluated 126 methods from 56 research groups for their ability to predict biological functions using Gene Ontology and gene-disease associations using Human Phenotype Ontology on a set of 3681 proteins from 18 species. CAFA2 featured expanded analysis compared with CAFA1, with regards to data set size, variety, and assessment metrics. To review progress in the field, the analysis compared the best methods from CAFA1 to those of CAFA2. Conclusions The top-performing methods in CAFA2 outperformed those from CAFA1. This increased accuracy can be attributed to a combination of the growing number of experimental annotations and improved methods for function prediction. The assessment also revealed that the definition of top-performing algorithms is ontology specific, that different performance metrics can be used to probe the nature of accurate predictions, and the relative diversity of predictions in the biological process and human phenotype ontologies. While there was methodological improvement between CAFA1 and CAFA2, the interpretation of results and usefulness of individual methods remain context-dependent.}, language = {en} } @article{HanzelmannJooFranzWachteletal.2016, author = {Hanzelmann, Dennis and Joo, Hwang-Soo and Franz-Wachtel, Mirita and Hertlein, Tobias and Stevanovic, Stefan and Macek, Boris and Wolz, Christiane and G{\"o}tz, Friedrich and Otto, Michael and Kretschmer, Dorothee and Peschel, Andreas}, title = {Toll-like receptor 2 activation depends on lipopeptide shedding by bacterial surfactants}, series = {Nature Communications}, volume = {7}, journal = {Nature Communications}, doi = {10.1038/ncomms12304}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165975}, pages = {12304}, year = {2016}, abstract = {Sepsis caused by Gram-positive bacterial pathogens is a major fatal disease but its molecular basis remains elusive. Toll-like receptor 2 (TLR2) has been implicated in the orchestration of inflammation and sepsis but its role appears to vary for different pathogen species and clones. Accordingly, Staphylococcus aureus clinical isolates differ substantially in their capacity to activate TLR2. Here we show that strong TLR2 stimulation depends on high-level production of phenol-soluble modulin (PSM) peptides in response to the global virulence activator Agr. PSMs are required for mobilizing lipoproteins, the TLR2 agonists, from the staphylococcal cytoplasmic membrane. Notably, the course of sepsis caused by PSM-deficient S. aureus is similar in wild-type and TLR2-deficient mice, but TLR2 is required for protection of mice against PSM-producing S. aureus. Thus, a crucial role of TLR2 depends on agonist release by bacterial surfactants. Modulation of this process may lead to new therapeutic strategies against Gram-positive infections.}, language = {en} } @article{BabskiHaasNaetherSchindleretal.2016, author = {Babski, Julia and Haas, Karina A. and N{\"a}ther-Schindler, Daniela and Pfeiffer, Friedhelm and F{\"o}rstner, Konrad U. and Hammelmann, Matthias and Hilker, Rolf and Becker, Anke and Sharma, Cynthia M. and Marchfelder, Anita and Soppa, J{\"o}rg}, title = {Genome-wide identification of transcriptional start sites in the haloarchaeon Haloferax volcanii based on differential RNA-Seq (dRNA-Seq)}, series = {BMC Genomics}, volume = {17}, journal = {BMC Genomics}, number = {629}, doi = {10.1186/s12864-016-2920-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164553}, year = {2016}, abstract = {Background Differential RNA-Seq (dRNA-Seq) is a recently developed method of performing primary transcriptome analyses that allows for the genome-wide mapping of transcriptional start sites (TSSs) and the identification of novel transcripts. Although the transcriptomes of diverse bacterial species have been characterized by dRNA-Seq, the transcriptome analysis of archaeal species is still rather limited. Therefore, we used dRNA-Seq to characterize the primary transcriptome of the model archaeon Haloferax volcanii. Results Three independent cultures of Hfx. volcanii grown under optimal conditions to the mid-exponential growth phase were used to determine the primary transcriptome and map the 5′-ends of the transcripts. In total, 4749 potential TSSs were detected. A position weight matrix (PWM) was derived for the promoter predictions, and the results showed that 64 \% of the TSSs were preceded by stringent or relaxed basal promoters. Of the identified TSSs, 1851 belonged to protein-coding genes. Thus, fewer than half (46 \%) of the 4040 protein-coding genes were expressed under optimal growth conditions. Seventy-two percent of all protein-coding transcripts were leaderless, which emphasized that this pathway is the major pathway for translation initiation in haloarchaea. A total of 2898 of the TSSs belonged to potential non-coding RNAs, which accounted for an unexpectedly high fraction (61 \%) of all transcripts. Most of the non-coding TSSs had not been previously described (2792) and represented novel sequences (59 \% of all TSSs). A large fraction of the potential novel non-coding transcripts were cis-antisense RNAs (1244 aTSSs). A strong negative correlation between the levels of antisense transcripts and cognate sense mRNAs was found, which suggested that the negative regulation of gene expression via antisense RNAs may play an important role in haloarchaea. The other types of novel non-coding transcripts corresponded to internal transcripts overlapping with mRNAs (1153 iTSSs) and intergenic small RNA (sRNA) candidates (395 TSSs). Conclusion This study provides a comprehensive map of the primary transcriptome of Hfx. volcanii grown under optimal conditions. Fewer than half of all protein-coding genes have been transcribed under these conditions. Unexpectedly, more than half of the detected TSSs belonged to several classes of non-coding RNAs. Thus, RNA-based regulation appears to play a more important role in haloarchaea than previously anticipated.}, language = {en} } @article{ČuklinaHahnImakaevetal.2016, author = {Čuklina, Jelena and Hahn, Julia and Imakaev, Maxim and Omasits, Ulrich and F{\"o}rstner, Konrad U. and Ljubimov, Nikolay and Goebel, Melanie and Pessi, Gabriella and Fischer, Hans-Martin and Ahrens, Christian H. and Gelfand, Mikhail S. and Evguenieva-Hackenberg, Elena}, title = {Genome-wide transcription start site mapping of Bradyrhizobium japonicum grown free-living or in symbiosis - a rich resource to identify new transcripts, proteins and to study gene regulation}, series = {BMC Genomics}, volume = {17}, journal = {BMC Genomics}, doi = {10.1186/s12864-016-2602-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164565}, pages = {302}, year = {2016}, abstract = {Background Differential RNA-sequencing (dRNA-seq) is indispensable for determination of primary transcriptomes. However, using dRNA-seq data to map transcriptional start sites (TSSs) and promoters genome-wide is a bioinformatics challenge. We performed dRNA-seq of Bradyrhizobium japonicum USDA 110, the nitrogen-fixing symbiont of soybean, and developed algorithms to map TSSs and promoters. Results A specialized machine learning procedure for TSS recognition allowed us to map 15,923 TSSs: 14,360 in free-living bacteria, 4329 in symbiosis with soybean and 2766 in both conditions. Further, we provide proteomic evidence for 4090 proteins, among them 107 proteins corresponding to new genes and 178 proteins with N-termini different from the existing annotation (72 and 109 of them with TSS support, respectively). Guided by proteomics evidence, previously identified TSSs and TSSs experimentally validated here, we assign a score threshold to flag 14 \% of the mapped TSSs as a class of lower confidence. However, this class of lower confidence contains valid TSSs of low-abundant transcripts. Moreover, we developed a de novo algorithm to identify promoter motifs upstream of mapped TSSs, which is publicly available, and found motifs mainly used in symbiosis (similar to RpoN-dependent promoters) or under both conditions (similar to RpoD-dependent promoters). Mapped TSSs and putative promoters, proteomic evidence and updated gene annotation were combined into an annotation file. Conclusions The genome-wide TSS and promoter maps along with the extended genome annotation of B. japonicum represent a valuable resource for future systems biology studies and for detailed analyses of individual non-coding transcripts and ORFs. Our data will also provide new insights into bacterial gene regulation during the agriculturally important symbiosis between rhizobia and legumes.}, language = {en} } @article{EneLohseVladuetal.2016, author = {Ene, Iuliana V. and Lohse, Matthew B. and Vladu, Adrian V. and Morschh{\"a}user, Joachim and Johnson, Alexander D. and Bennett, Richard J.}, title = {Phenotypic Profiling Reveals that Candida albicans Opaque Cells Represent a Metabolically Specialized Cell State Compared to Default White Cells}, series = {mBio}, volume = {7}, journal = {mBio}, number = {6}, doi = {10.1128/mBio.01269-16}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165818}, pages = {e01269-16}, year = {2016}, abstract = {The white-opaque switch is a bistable, epigenetic transition affecting multiple traits in Candida albicans including mating, immunogenicity, and niche specificity. To compare how the two cell states respond to external cues, we examined the fitness, phenotypic switching, and filamentation properties of white cells and opaque cells under 1,440 different conditions at 25°C and 37°C. We demonstrate that white and opaque cells display striking differences in their integration of metabolic and thermal cues, so that the two states exhibit optimal fitness under distinct conditions. White cells were fitter than opaque cells under a wide range of environmental conditions, including growth at various pHs and in the presence of chemical stresses or antifungal drugs. This difference was exacerbated at 37°C, consistent with white cells being the default state of C. albicans in the mammalian host. In contrast, opaque cells showed greater fitness than white cells under select nutritional conditions, including growth on diverse peptides at 25°C. We further demonstrate that filamentation is significantly rewired between the two states, with white and opaque cells undergoing filamentous growth in response to distinct external cues. Genetic analysis was used to identify signaling pathways impacting the white-opaque transition both in vitro and in a murine model of commensal colonization, and three sugar sensing pathways are revealed as regulators of the switch. Together, these findings establish that white and opaque cells are programmed for differential integration of metabolic and thermal cues and that opaque cells represent a more metabolically specialized cell state than the default white state.}, language = {en} } @article{DugarSvenssonBischleretal.2016, author = {Dugar, Gaurav and Svensson, Sarah L. and Bischler, Thorsten and Waldchen, Sina and Reinhardt, Richard and Sauer, Markus and Sharma, Cynthia M.}, title = {The CsrA-FliW network controls polar localization of the dual-function flagellin mRNA in Campylobacter jejuni}, series = {Nature Communications}, volume = {7}, journal = {Nature Communications}, doi = {10.1038/ncomms11667}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-173201}, year = {2016}, abstract = {The widespread CsrA/RsmA protein regulators repress translation by binding GGA motifs in bacterial mRNAs. CsrA activity is primarily controlled through sequestration by multiple small regulatory RNAs. Here we investigate CsrA activity control in the absence of antagonizing small RNAs by examining the CsrA regulon in the human pathogen Campylobacter jejuni. We use genome-wide co-immunoprecipitation combined with RNA sequencing to show that CsrA primarily binds flagellar mRNAs and identify the major flagellin mRNA (flaA) as the main CsrA target. The flaA mRNA is translationally repressed by CsrA, but it can also titrate CsrA activity. Together with the main C. jejuni CsrA antagonist, the FliW protein, flaA mRNA controls CsrA-mediated post-transcriptional regulation of other flagellar genes. RNA-FISH reveals that flaA mRNA is expressed and localized at the poles of elongating cells. Polar flaA mRNA localization is translation dependent and is post-transcriptionally regulated by the CsrA-FliW network. Overall, our results suggest a role for CsrA-FliW in spatiotemporal control of flagella assembly and localization of a dual-function mRNA.}, language = {en} } @article{SelleHertleinOesterreichetal.2016, author = {Selle, Martina and Hertlein, Tobias and Oesterreich, Babett and Klemm, Theresa and Kloppot, Peggy and M{\"u}ller, Elke and Ehricht, Ralf and Stentzel, Sebastian and Br{\"o}ker, Barbara M. and Engelmann, Susanne and Ohlsen, Knut}, title = {Global antibody response to Staphylococcus aureus live-cell vaccination}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, doi = {10.1038/srep24754}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-181245}, year = {2016}, abstract = {The pathogen Staphylococcus aureus causes a broad range of severe diseases and is feared for its ability to rapidly develop resistance to antibiotic substances. The increasing number of highly resistant S. aureus infections has accelerated the search for alternative treatment options to close the widening gap in anti-S. aureus therapy. This study analyses the humoral immune response to vaccination of Balb/c mice with sublethal doses of live S. aureus. The elicited antibody pattern in the sera of intravenously and intramuscularly vaccinated mice was determined using of a recently developed protein array. We observed a specific antibody response against a broad set of S. aureus antigens which was stronger following i.v. than i.m. vaccination. Intravenous but not intramuscular vaccination protected mice against an intramuscular challenge infection with a high bacterial dose. Vaccine protection was correlated with the strength of the anti-S. aureus antibody response. This study identified novel vaccine candidates by using protein microarrays as an effective tool and showed that successful vaccination against S. aureus relies on the optimal route of administration.}, language = {en} } @article{MuellerDolowschiakSellinetal.2016, author = {M{\"u}ller, Anna A. and Dolowschiak, Tamas and Sellin, Mikael E. and Felmy, Boas and Verbree, Carolin and Gadient, Sandra and Westermann, Alexander J. and Vogel, J{\"o}rg and LeibundGut-Landmann, Salome and Hardt, Wolf-Dietrich}, title = {An NK Cell Perforin Response Elicited via IL-18 Controls Mucosal Inflammation Kinetics during Salmonella Gut Infection}, series = {PLoS Pathogens}, volume = {12}, journal = {PLoS Pathogens}, number = {6}, doi = {10.1371/journal.ppat.1005723}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167429}, pages = {e1005723}, year = {2016}, abstract = {Salmonella Typhimurium (S.Tm) is a common cause of self-limiting diarrhea. The mucosal inflammation is thought to arise from a standoff between the pathogen's virulence factors and the host's mucosal innate immune defenses, particularly the mucosal NAIP/NLRC4 inflammasome. However, it had remained unclear how this switches the gut from homeostasis to inflammation. This was studied using the streptomycin mouse model. S.Tm infections in knockout mice, cytokine inhibition and -injection experiments revealed that caspase-1 (not -11) dependent IL-18 is pivotal for inducing acute inflammation. IL-18 boosted NK cell chemoattractants and enhanced the NK cells' migratory capacity, thus promoting mucosal accumulation of mature, activated NK cells. NK cell depletion and Prf\(^{-/-}\) ablation (but not granulocyte-depletion or T-cell deficiency) delayed tissue inflammation. Our data suggest an NK cell perforin response as one limiting factor in mounting gut mucosal inflammation. Thus, IL-18-elicited NK cell perforin responses seem to be critical for coordinating mucosal inflammation during early infection, when S.Tm strongly relies on virulence factors detectable by the inflammasome. This may have broad relevance for mucosal defense against microbial pathogens.}, language = {en} } @article{BarquistMayhoCumminsetal.2016, author = {Barquist, Lars and Mayho, Matthew and Cummins, Carla and Cain, Amy K. and Boinett, Christine J. and Page, Andrew J. and Langridge, Gemma C. and Quail, Michael A. and Keane, Jacqueline A. and Parkhill, Julian}, title = {The TraDIS toolkit: sequencing and analysis for dense transposon mutant libraries}, series = {Bioinformatics}, volume = {32}, journal = {Bioinformatics}, number = {7}, doi = {10.1093/bioinformatics/btw022}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-189667}, pages = {1109-1111}, year = {2016}, abstract = {Transposon insertion sequencing is a high-throughput technique for assaying large libraries of otherwise isogenic transposon mutants providing insight into gene essentiality, gene function and genetic interactions. We previously developed the Transposon Directed Insertion Sequencing (TraDIS) protocol for this purpose, which utilizes shearing of genomic DNA followed by specific PCR amplification of transposon-containing fragments and Illumina sequencing. Here we describe an optimized high-yield library preparation and sequencing protocol for TraDIS experiments and a novel software pipeline for analysis of the resulting data. The Bio-Tradis analysis pipeline is implemented as an extensible Perl library which can either be used as is, or as a basis for the development of more advanced analysis tools. This article can serve as a general reference for the application of the TraDIS methodology.}, language = {en} } @article{HershkoShalevOdenheimerBergmanElgrablyWeissetal.2016, author = {Hershko-Shalev, Tal and Odenheimer-Bergman, Ahuva and Elgrably-Weiss, Maya and Ben-Zvi, Tamar and Govindarajan, Sutharsan and Seri, Hemda and Papenfort, Kai and Vogel, J{\"o}rg and Altuvia, Shoshy}, title = {Gifsy-1 Prophage IsrK with Dual Function as Small and Messenger RNA Modulates Vital Bacterial Machineries}, series = {PLoS Genetics}, volume = {12}, journal = {PLoS Genetics}, number = {4}, doi = {10.1371/journal.pgen.1005975}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166717}, pages = {e1005975}, year = {2016}, abstract = {While an increasing number of conserved small regulatory RNAs (sRNAs) are known to function in general bacterial physiology, the roles and modes of action of sRNAs from horizontally acquired genomic regions remain little understood. The IsrK sRNA of Gifsy-1 prophage of Salmonella belongs to the latter class. This regulatory RNA exists in two isoforms. The first forms, when a portion of transcripts originating from isrK promoter reads-through the IsrK transcription-terminator producing a translationally inactive mRNA target. Acting in trans, the second isoform, short IsrK RNA, binds the inactive transcript rendering it translationally active. By switching on translation of the first isoform, short IsrK indirectly activates the production of AntQ, an antiterminator protein located upstream of isrK. Expression of antQ globally interferes with transcription termination resulting in bacterial growth arrest and ultimately cell death. Escherichia coli and Salmonella cells expressing AntQ display condensed chromatin morphology and localization of UvrD to the nucleoid. The toxic phenotype of AntQ can be rescued by co-expression of the transcription termination factor, Rho, or RNase H, which protects genomic DNA from breaks by resolving R-loops. We propose that AntQ causes conflicts between transcription and replication machineries and thus promotes DNA damage. The isrK locus represents a unique example of an island-encoded sRNA that exerts a highly complex regulatory mechanism to tune the expression of a toxic protein.}, language = {en} } @article{ReadMillsJohnsonetal.2016, author = {Read, Hannah M. and Mills, Grant and Johnson, Sarah and Tsai, Peter and Dalton, James and Barquist, Lars and Print, Cristin G. and Patrick, Wayne M. and Wiles, Siouxsie}, title = {The in vitro and in vivo effects of constitutive light expression on a bioluminescent strain of the mouse enteropathogen Citrobacter rodentium}, series = {PeerJ}, volume = {4}, journal = {PeerJ}, number = {e2130}, doi = {10.7717/peerj.2130}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166576}, year = {2016}, abstract = {Bioluminescent reporter genes, such as those from fireflies and bacteria, let researchers use light production as a non-invasive and non-destructive surrogate measure of microbial numbers in a wide variety of environments. As bioluminescence needs microbial metabolites, tagging microorganisms with luciferases means only live metabolically active cells are detected. Despite the wide use of bioluminescent reporter genes, very little is known about the impact of continuous (also called constitutive) light expression on tagged bacteria. We have previously made a bioluminescent strain of Citrobacter rodentium, a bacterium which infects laboratory mice in a similar way to how enteropathogenic Escherichia coli (EPEC) and enterohaemorrhagic E. coli (EHEC) infect humans. In this study, we compared the growth of the bioluminescent C. rodentium strain ICC180 with its non-bioluminescent parent (strain ICC169) in a wide variety of environments. To understand more about the metabolic burden of expressing light, we also compared the growth profiles of the two strains under approximately 2,000 different conditions. We found that constitutive light expression in ICC180 was near-neutral in almost every non-toxic environment tested. However, we also found that the non-bioluminescent parent strain has a competitive advantage over ICC180 during infection of adult mice, although this was not enough for ICC180 to be completely outcompeted. In conclusion, our data suggest that constitutive light expression is not metabolically costly to C. rodentium and supports the view that bioluminescent versions of microbes can be used as a substitute for their non-bioluminescent parents to study bacterial behaviour in a wide variety of environments.}, language = {en} } @article{EspinaPaganLopezetal.2015, author = {Espina, Laura and Pag{\´a}n, Rafael and L{\´o}pez, Daniel and Garc{\´i}a-Gonzalo, Diego}, title = {Individual Constituents from Essential Oils Inhibit Biofilm Mass Production by Multi-Drug Resistant Staphylococcus aureus}, series = {Molecules}, volume = {20}, journal = {Molecules}, doi = {10.3390/molecules200611357}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-151845}, pages = {11357 -- 11372}, year = {2015}, abstract = {Biofilm formation by Staphylococcus aureus represents a problem in both the medical field and the food industry, because the biofilm structure provides protection to embedded cells and it strongly attaches to surfaces. This circumstance is leading to many research programs seeking new alternatives to control biofilm formation by this pathogen. In this study we show that a potent inhibition of biofilm mass production can be achieved in community-associated methicillin-resistant S. aureus (CA-MRSA) and methicillin-sensitive strains using plant compounds, such as individual constituents (ICs) of essential oils (carvacrol, citral, and (+)-limonene). The Crystal Violet staining technique was used to evaluate biofilm mass formation during 40 h of incubation. Carvacrol is the most effective IC, abrogating biofilm formation in all strains tested, while CA-MRSA was the most sensitive phenotype to any of the ICs tested. Inhibition of planktonic cells by ICs during initial growth stages could partially explain the inhibition of biofilm formation. Overall, our results show the potential of EOs to prevent biofilm formation, especially in strains that exhibit resistance to other antimicrobials. As these compounds are food additives generally recognized as safe, their anti-biofilm properties may lead to important new applications, such as sanitizers, in the food industry or in clinical settings.}, language = {en} } @article{FirdessaGoodAmstaldenetal.2015, author = {Firdessa, Rebuma and Good, Liam and Amstalden, Maria Cecilia and Chindera, Kantaraja and Kamaruzzaman, Nor Fadhilah and Schultheis, Martina and R{\"o}ger, Bianca and Hecht, Nina and Oelschlaeger, Tobias A. and Meinel, Lorenz and L{\"u}hmann, Tessa and Moll, Heidrun}, title = {Pathogen- and host-directed antileishmanial effects mediated by polyhexanide (PHMB)}, series = {PLoS Neglected Tropical Diseases}, volume = {9}, journal = {PLoS Neglected Tropical Diseases}, number = {10}, doi = {10.1371/journal.pntd.0004041}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148162}, pages = {e0004041}, year = {2015}, abstract = {Background Cutaneous leishmaniasis (CL) is a neglected tropical disease caused by protozoan parasites of the genus Leishmania. CL causes enormous suffering in many countries worldwide. There is no licensed vaccine against CL, and the chemotherapy options show limited efficacy and high toxicity. Localization of the parasites inside host cells is a barrier to most standard chemo- and immune-based interventions. Hence, novel drugs, which are safe, effective and readily accessible to third-world countries and/or drug delivery technologies for effective CL treatments are desperately needed. Methodology/Principal Findings Here we evaluated the antileishmanial properties and delivery potential of polyhexamethylene biguanide (PHMB; polyhexanide), a widely used antimicrobial and wound antiseptic, in the Leishmania model. PHMB showed an inherent antileishmanial activity at submicromolar concentrations. Our data revealed that PHMB kills Leishmania major (L. major) via a dual mechanism involving disruption of membrane integrity and selective chromosome condensation and damage. PHMB's DNA binding and host cell entry properties were further exploited to improve the delivery and immunomodulatory activities of unmethylated cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODN). PHMB spontaneously bound CpG ODN, forming stable nanopolyplexes that enhanced uptake of CpG ODN, potentiated antimicrobial killing and reduced host cell toxicity of PHMB. Conclusions Given its low cost and long history of safe topical use, PHMB holds promise as a drug for CL therapy and delivery vehicle for nucleic acid immunomodulators.}, language = {en} } @article{DembekBarquistBoinettetal.2015, author = {Dembek, Marcin and Barquist, Lars and Boinett, Christine J. and Cain, Amy K. and Mayho, Matthew and Lawley, Trevor D. and Fairweather, Neil F. and Fagan, Robert P.}, title = {High-throughput analysis of gene essentiality and sporulation in Clostridium difficile}, series = {mBio}, volume = {6}, journal = {mBio}, number = {2}, doi = {10.1128/mBio.02383-14}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-143745}, pages = {e02383-14}, year = {2015}, abstract = {Clostridium difficile is the most common cause of antibiotic-associated intestinal infections and a significant cause of morbidity and mortality. Infection with C. difficile requires disruption of the intestinal microbiota, most commonly by antibiotic usage. Therapeutic intervention largely relies on a small number of broad-spectrum antibiotics, which further exacerbate intestinal dysbiosis and leave the patient acutely sensitive to reinfection. Development of novel targeted therapeutic interventions will require a detailed knowledge of essential cellular processes, which represent attractive targets, and species-specific processes, such as bacterial sporulation. Our knowledge of the genetic basis of C. difficile infection has been hampered by a lack of genetic tools, although recent developments have made some headway in addressing this limitation. Here we describe the development of a method for rapidly generating large numbers of transposon mutants in clinically important strains of C. difficile. We validated our transposon mutagenesis approach in a model strain of C. difficile and then generated a comprehensive transposon library in the highly virulent epidemic strain R20291 (027/BI/NAP1) containing more than 70,000 unique mutants. Using transposon-directed insertion site sequencing (TraDIS), we have identified a core set of 404 essential genes, required for growth in vitro. We then applied this technique to the process of sporulation, an absolute requirement for C. difficile transmission and pathogenesis, identifying 798 genes that are likely to impact spore production. The data generated in this study will form a valuable resource for the community and inform future research on this important human pathogen.}, language = {en} } @article{NeumannOhlsenDonatetal.2015, author = {Neumann, Yvonne and Ohlsen, Knut and Donat, Stefanie and Engelmann, Susanne and Kusch, Harald and Albrecht, Dirk and Cartron, Michael and Hurd, Alexander and Foster, Simon J.}, title = {The effect of skin fatty acids on Staphylococcus aureus}, series = {Archives of Microbiology}, volume = {197}, journal = {Archives of Microbiology}, doi = {10.1007/s00203-014-1048-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-121657}, pages = {245-67}, year = {2015}, abstract = {Staphylococcus aureus is a commensal of the human nose and skin. Human skin fatty acids, in particular cis-6-hexadecenoic acid (C-6-H), have high antistaphylococcal activity and can inhibit virulence determinant production. Here, we show that sub-MIC levels of C-6-H result in induction of increased resistance. The mechanism(s) of C-6-H activity was investigated by combined transcriptome and proteome analyses. Proteome analysis demonstrated a pleiotropic effect of C-6-H on virulence determinant production. In response to C-6-H, transcriptomics revealed altered expression of over 500 genes, involved in many aspects of virulence and cellular physiology. The expression of toxins (hla, hlb, hlgBC) was reduced, whereas that of host defence evasion components (cap, sspAB, katA) was increased. In particular, members of the SaeRS regulon had highly reduced expression, and the use of specific mutants revealed that the effect on toxin production is likely mediated via SaeRS}, language = {en} } @article{MasicValenciaHernandezHazraetal.2015, author = {Masic, Anita and Valencia Hernandez, Ana Maria and Hazra, Sudipta and Glaser, Jan and Holzgrabe, Ulrike and Hazra, Banasri and Schurigt, Uta}, title = {Cinnamic Acid Bornyl Ester Derivatives from Valeriana wallichii Exhibit Antileishmanial In Vivo Activity in Leishmania major-Infected BALB/c Mice}, series = {PLoS One}, volume = {10}, journal = {PLoS One}, number = {11}, doi = {10.1371/journal.pone.0142386}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125354}, pages = {e0142386}, year = {2015}, abstract = {Human leishmaniasis covers a broad spectrum of clinical manifestations ranging from self-healing cutaneous leishmaniasis to severe and lethal visceral leishmaniasis caused among other species by Leishmania major or Leishmania donovani, respectively. Some drug candidates are in clinical trials to substitute current therapies, which are facing emerging drug-resistance accompanied with serious side effects. Here, two cinnamic acid bornyl ester derivatives (1 and 2) were assessed for their antileishmanial activity. Good selectivity and antileishmanial activity of bornyl 3-phenylpropanoate (2) in vitro prompted the antileishmanial assessment in vivo. For this purpose, BALB/c mice were infected with Leishmania major promastigotes and treated with three doses of 50 mg/kg/day of compound 2. The treatment prevented the characteristic swelling at the site of infection and correlated with reduced parasite burden. Transmitted light microscopy and transmission electron microscopy of Leishmania major promastigotes revealed that compounds 1 and 2 induce mitochondrial swelling. Subsequent studies on Leishmania major promastigotes showed the loss of mitochondrial transmembrane potential (ΔΨm) as a putative mode of action. As the cinnamic acid bornyl ester derivatives 1 and 2 had exhibited antileishmanial activity in vitro, and compound 2 in Leishmania major-infected BALB/c mice in vivo, they can be regarded as possible lead structures for the development of new antileishmanial therapeutic approaches.}, language = {en} } @article{SchneiderKleinMielichSuessetal.2015, author = {Schneider, Johannes and Klein, Teresa and Mielich-S{\"u}ss, Benjamin and Koch, Gudrun and Franke, Christian and Kuipers, Oskar P. and Kov{\´a}cs, {\´A}kos T. and Sauer, Markus and Lopez, Daniel}, title = {Spatio-temporal Remodeling of Functional Membrane Microdomains Organizes the Signaling Networks of a Bacterium}, series = {PLoS Genetics}, volume = {11}, journal = {PLoS Genetics}, number = {4}, doi = {10.1371/journal.pgen.1005140}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125577}, pages = {e1005140}, year = {2015}, abstract = {Lipid rafts are membrane microdomains specialized in the regulation of numerous cellular processes related to membrane organization, as diverse as signal transduction, protein sorting, membrane trafficking or pathogen invasion. It has been proposed that this functional diversity would require a heterogeneous population of raft domains with varying compositions. However, a mechanism for such diversification is not known. We recently discovered that bacterial membranes organize their signal transduction pathways in functional membrane microdomains (FMMs) that are structurally and functionally similar to the eukaryotic lipid rafts. In this report, we took advantage of the tractability of the prokaryotic model Bacillus subtilis to provide evidence for the coexistence of two distinct families of FMMs in bacterial membranes, displaying a distinctive distribution of proteins specialized in different biological processes. One family of microdomains harbors the scaffolding flotillin protein FloA that selectively tethers proteins specialized in regulating cell envelope turnover and primary metabolism. A second population of microdomains containing the two scaffolding flotillins, FloA and FloT, arises exclusively at later stages of cell growth and specializes in adaptation of cells to stationary phase. Importantly, the diversification of membrane microdomains does not occur arbitrarily. We discovered that bacterial cells control the spatio-temporal remodeling of microdomains by restricting the activation of FloT expression to stationary phase. This regulation ensures a sequential assembly of functionally specialized membrane microdomains to strategically organize signaling networks at the right time during the lifespan of a bacterium.}, language = {en} } @article{GlaserSchurigtSuzukietal.2015, author = {Glaser, Jan and Schurigt, Uta and Suzuki, Brian M. and Caffrey, Connor R. and Holzgrabe, Ulrike}, title = {Anti-Schistosomal Activity of Cinnamic Acid Esters: Eugenyl}, series = {Molecules}, volume = {20}, journal = {Molecules}, doi = {10.3390/molecules200610873}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125712}, pages = {10873-10883}, year = {2015}, abstract = {Bornyl caffeate (1) was previously isolated by us from Valeriana (V.) wallichii rhizomes and identified as an anti-leishmanial substance. Here, we screened a small compound library of synthesized derivatives 1-30 for activity against schistosomula of Schistosoma (S.) mansoni. Compound 1 did not show any anti-schistosomal activity. However, strong phenotypic changes, including the formation of vacuoles, degeneration and death were observed after in vitro treatment with compounds 23 (thymyl cinnamate) and 27 (eugenyl cinnamate). Electron microscopy analysis of the induced vacuoles in the dying parasites suggests that 23 and 27 interfere with autophagy.}, language = {en} } @article{FrankMarcudeOliveiraAlmeidaPetersenetal.2015, author = {Frank, Benjamin and Marcu, Ana and de Oliveira Almeida Petersen, Antonio Luis and Weber, Heike and Stigloher, Christian and Mottram, Jeremy C. and Scholz, Claus J{\"u}rgen and Schurigt, Uta}, title = {Autophagic digestion of Leishmania major by host macrophages is associated with differential expression of BNIP3, CTSE, and the miRNAs miR-101c, miR-129, and miR-210}, series = {Parasites \& Vectors}, volume = {8}, journal = {Parasites \& Vectors}, number = {404}, doi = {10.1186/s13071-015-0974-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-124997}, year = {2015}, abstract = {Background Autophagy participates in innate immunity by eliminating intracellular pathogens. Consequently, numerous microorganisms have developed strategies to impair the autophagic machinery in phagocytes. In the current study, interactions between Leishmania major (L. m.) and the autophagic machinery of bone marrow-derived macrophages (BMDM) were analyzed. Methods BMDM were generated from BALB/c mice, and the cells were infected with L. m. promastigotes. Transmission electron microscopy (TEM) and electron tomography were used to investigate the ultrastructure of BMDM and the intracellular parasites. Affymetrix® chip analyses were conducted to identify autophagy-related messenger RNAs (mRNAs) and microRNAs (miRNAs). The protein expression levels of autophagy related 5 (ATG5), BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3), cathepsin E (CTSE), mechanistic target of rapamycin (MTOR), microtubule-associated proteins 1A/1B light chain 3B (LC3B), and ubiquitin (UB) were investigated through western blot analyses. BMDM were transfected with specific small interfering RNAs (siRNAs) against autophagy-related genes and with mimics or inhibitors of autophagy-associated miRNAs. The infection rates of BMDM were determined by light microscopy after a parasite-specific staining. Results The experiments demonstrated autophagy induction in BMDM after in vitro infection with L. m.. The results suggested a putative MTOR phosphorylation-dependent counteracting mechanism in the early infection phase and indicated that intracellular amastigotes were cleared by autophagy in BMDM in the late infection phase. Transcriptomic analyses and specific downregulation of protein expression with siRNAs suggested there is an association between the infection-specific over expression of BNIP3, as well as CTSE, and the autophagic activity of BMDM. Transfection with mimics of mmu-miR-101c and mmu-miR-129-5p, as well as with an inhibitor of mmu-miR-210-5p, demonstrated direct effects of the respective miRNAs on parasite clearance in L. m.-infected BMDM. Furthermore, Affymetrix® chip analyses revealed a complex autophagy-related RNA network consisting of differentially expressed mRNAs and miRNAs in BMDM, which indicates high glycolytic and inflammatory activity in the host macrophages. Conclusions Autophagy in L. m.-infected host macrophages is a highly regulated cellular process at both the RNA level and the protein level. Autophagy has the potential to clear parasites from the host. The results obtained from experiments with murine host macrophages could be translated in the future to develop innovative and therapeutic antileishmanial strategies for human patients.}, language = {en} } @article{AbdaKrysciakKrohnMoltetal.2015, author = {Abda, Ebrahim M. and Krysciak, Dagmar and Krohn-Molt, Ines and Mamat, Uwe and Schmeisser, Christel and F{\"o}rstner, Konrad U. and Schaible, Ulrich E. and Kohi, Thomas A. and Nieman, Stefan and Streit, Wolfgang R.}, title = {Phenotypic Heterogeneity Affects Stenotrophomonas maltophilia K279a Colony Morphotypes and \(\beta\)-Lactamase Expression}, series = {Frontiers in Microbiology}, volume = {6}, journal = {Frontiers in Microbiology}, number = {1373}, doi = {10.3389/fmicb.2015.01373}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-136446}, year = {2015}, abstract = {Phenotypic heterogeneity at the cellular level in response to various stresses, e.g., antibiotic treatment has been reported for a number of bacteria. In a clonal population, cell-to-cell variation may result in phenotypic heterogeneity that is a mechanism to survive changing environments including antibiotic therapy. Stenotrophomonas rnaltophilia has been frequently isolated from cystic fibrosis patients, can cause numerous infections in other organs and tissues, and is difficult to treat due to antibiotic resistances. S. maltophilia K279a produces the Li and L2 beta-lactamases in response to beta-lactam treatment. Here we report that the patient isolate S. rnaltophilia K279a diverges into cellular subpopulations with distinct but reversible morphotypes of small and big colonies when challenged with ampicillin. This observation is consistent with the formation of elongated chains of bacteria during exponential growth phase and the occurrence of mainly rod-shaped cells in liquid media. RNA-seq analysis of small versus big colonies revealed differential regulation of at least seven genes among the colony morphotypes. Among those, bleu and bla(L2) were transcriptionally the most strongly upregulated genes. Promoter fusions of b/a(L1) and b/a(L2) genes indicated that expression of both genes is also subject to high levels of phenotypic heterogeneous expression on a single cell level. Additionally, the comE homolog was found to be differentially expressed in homogenously versus heterogeneously bla(L2) expressing cells as identified by RNA(seq) analysis. Overexpression of cornE in S. maltophilia K279a reduced the level of cells that were in a bla(L2)-ON mode to 1\% or lower. Taken together, our data provide strong evidence that S. maltophilia K279a populations develop phenotypic heterogeneity in an ampicillin challenged model. This cellular variability is triggered by regulation networks including b/a(L1), b/a(L2), and comE.}, language = {en} }