@phdthesis{Lerch2018, author = {Lerch, Maike Franziska}, title = {Characterisation of a novel non-coding RNA and its involvement in polysaccharide intercellular adhesin (PIA)-mediated biofilm formation of \(Staphylococcus\) \(epidermidis\)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-155777}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Coagulase-negative staphylococci, particularly Staphylococcus epidermidis, have been recognised as an important cause of health care-associated infections due to catheterisation, and livestock-associated infections. The colonisation of indwelling medical devices is achieved by the formation of biofilms, which are large cell-clusters surrounded by an extracellular matrix. This extracellular matrix consists mainly of PIA (polysaccharide intercellular adhesin), which is encoded by the icaADBC-operon. The importance of icaADBC in clinical strains provoking severe infections initiated numerous investigations of this operon and its regulation within the last two decades. The discovery of a long transcript being located next to icaADBC, downstream of the regulator gene icaR, led to the hypothesis of a possible involvement of this transcript in the regulation of biofilm formation (Eckart, 2006). Goal of this work was to characterise this transcript, named ncRNA IcaZ, in molecular detail and to uncover its functional role in S. epidermidis. The ~400 nt long IcaZ is specific for ica-positive S. epidermidis and is transcribed in early- and mid-exponential growth phase as primary transcript. The promotor sequence and the first nucleotides of icaZ overlap with the 3' UTR of the preceding icaR gene, whereas the terminator sequence is shared by tRNAThr-4, being located convergently to icaZ. Deletion of icaZ resulted in a macroscopic biofilm-negative phenotype with highly diminished PIA-biofilm. Biofilm composition was analysed in vitro by classical crystal violet assays and in vivo by confocal laser scanning microscopy under flow conditions to display biofilm formation in real-time. The mutant showed clear defects in initial adherence and decreased cell-cell adherence, and was therefore not able to form a proper biofilm under flow in contrast to the wildtype. Restoration of PIA upon providing icaZ complementation from plasmids revealed inconsistent results in the various mutant backgrounds. To uncover the functional role of IcaZ, transcriptomic and proteomic analysis was carried out, providing some hints on candidate targets, but the varying biofilm phenotypes of wildtype and icaZ mutants made it difficult to identify direct IcaZ mRNA targets. Pulse expression of icaZ was then used as direct fishing method and computational target predictions were executed with candidate mRNAs from aforesaid approaches. The combined data of these analyses suggested an involvement of icaR in IcaZ-mediated biofilm control. Therefore, RNA binding assays were established for IcaZ and icaR mRNA. A positive gel shift was maintained with icaR 3' UTR and with 5'/3' icaR mRNA fusion product, whereas no gel shift was obtained with icaA mRNA. From these assays, it was assumed that IcaZ regulates icaR mRNA expression in S. epidermidis. S. aureus instead lacks ncRNA IcaZ and its icaR mRNA was shown to undergo autoregulation under so far unknown circumstances by intra- or intermolecular binding of 5' UTR and 3' UTR (Ruiz de los Mozos et al., 2013). Here, the Shine-Dalgarno sequence is blocked through 5'/3' UTR base pairing and RNase III, an endoribonuclease, degrades icaR mRNA, leading to translational blockade. In this work, icaR mRNA autoregulation was therefore analysed experimentally in S. epidermidis and results showed that this specific autoregulation does not take place in this organism. An involvement of RNase III in the degradation process could not be verified here. GFP-reporter plasmids were generated to visualise the interaction, but have to be improved for further investigations. In conclusion, IcaZ was found to interact with icaR mRNA, thereby conceivably interfering with translation initiation of repressor IcaR, and thus to promote PIA synthesis and biofilm formation. In addition, the environmental factor ethanol was found to induce icaZ expression, while only weak or no effects were obtained with NaCl and glucose. Ethanol, actually is an ingredient of disinfectants in hospital settings and known as efficient effector for biofilm induction. As biofilm formation on medical devices is a critical factor hampering treatment of S. epidermidis infections in clinical care, the results of this thesis do not only contribute to better understanding of the complex network of biofilm regulation in staphylococci, but may also have practical relevance in the future.}, subject = {Biofilm}, language = {en} } @phdthesis{Batzilla2007, author = {Batzilla, Christoph Friedemann}, title = {Untersuchungen zur Biofilmbildung und zum Quroum-sensing in Staphylococcus epidermidis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-22278}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {Das Gram-positive, Koagulase-negative Bakterium Staphylococcus epidermidis war viele Jahrzehnte als harmloser Kommensale der menschlichen Haut und der Schleimh{\"a}ute bekannt. Jedoch hat sich S. epidermidis in den letzten zwanzig Jahren zu einem Haupterreger von Nosokomialinfektionen entwickelt. Dabei unterscheidet sich S. epidermidis im Vergleich zu anderen Erregern durch ein sehr begrenztes Spektrum an Pathogenit{\"a}tsfaktoren, aber auch durch seine F{\"a}higkeit, Biofilme auf k{\"u}nstlichen Oberfl{\"a}chen wie Kathetern und Implantaten formen zu k{\"o}nnen. Die vorliegende Arbeit besch{\"a}ftigt sich mit zwei Hauptaspekten, die in der Pathogenit{\"a}t von S. epidermidis eine wichtige Rolle spielen: (i) dem Quorum-sensing System Agr (accessory gene regulator) und (ii) dem zeitlichen Prozess des Aufbaus, sowie der Regulation der Biofilmbildung von S. epidermidis. Das Quorum-sensing System Agr ist Teil eines komplexen regulatorischen Netzwerks. In der vorliegenden Arbeit wird durch Proteom- und Transkriptomanalysen gezeigt, dass das Agr-System in S._epidermidis den Hauptregulator f{\"u}r die Sekretion von extrazellul{\"a}ren Proteinen darstellt und dar{\"u}ber hinaus einen großen Einfluss auf die Regulation des Zentralmetabolismus und der Biosynthese von Aminos{\"a}uren hat. Mittels Mikroarray-Analyse konnte eine wichtige Verkn{\"u}pfung des Agr-Systems mit dem pleiotrophen Repressor CodY identifiziert werden, der viele station{\"a}re-Phase Gene im S._epidermidis Wildtyp reprimiert, jedoch nicht in der getesteten agr Mutante. Dieses f{\"u}hrt zu einem stark ver{\"a}nderten Ph{\"a}notyp der S. epidermidis agr Mutante, in Hinblick auf Wachstumskapazit{\"a}t, der Biofilmbildung, der Invasivit{\"a}t und dem Langzeit{\"u}berleben. Interessanterweise ergaben wissenschaftliche Studien, dass ca. 17 \% der klinischen Isolate nat{\"u}rlich vorkommende agr Mutanten sind. Dieses k{\"o}nnte ein Hinweis darauf sein, dass S. epidermidis agr Mutanten aufgrund ihres stark ver{\"a}nderten Ph{\"a}notyps und ihrer ver{\"a}nderten biochemischen Bed{\"u}rfnisse und Kapazit{\"a}t in der Lage sind, andere {\"o}kologische Nischen im menschlichen Wirt zu besiedeln. Der zweite Teil dieser Arbeit hat die Biofilmbildung von S. epidermidis zum Thema. Durch die Etablierung eines standardisierten Modells der Biofilmbildung, war es m{\"o}glich, {\"u}ber die Einf{\"u}hrung einer Biofilm-Adh{\"a}sion-Ratio die Biofilmbildung als zeitlichen dynamischen Prozess darzustellen und verschiedenste Bedingungen und St{\"a}mme miteinander zu vergleichen. Dabei zeigte sich, dass die Biofilmbildung in S._epidermidis ein klar zeitlich strukturierter Prozess ist, der von Umweltfaktoren und der N{\"a}hrstoffsituation abh{\"a}ngig ist, und dass verschiedene St{\"a}mme sehr unterschiedlich auf Ver{\"a}nderungen in ihrer Umwelt reagieren. Die zeitliche Analyse der Biofilmbildung mittels konfokaler Lasermikroskopie ergab, dass viele der Bakterien im Biofilm sterben. Dieses macht den Biofilm wesentlich anf{\"a}lliger f{\"u}r Str{\"o}mungsscherkr{\"a}fte, die dann ganze Bakterienverb{\"a}nde abl{\"o}sen und zu neuen Infektionsherden schwemmen k{\"o}nnten. Somit erm{\"o}glicht der Tod einer einzelnen Zelle unter Umst{\"a}nden ein besseres klonales {\"U}berleben. Die Mikroarray-Analysen der Genexpression im Biofilm zeigten, dass dieser einen physiologisch klar definierten Prozess durchl{\"a}uft, der zu einer sehr stark verminderten metabolischen Aktivit{\"a}t und einer erh{\"o}hten Antibiotika-Resistenz f{\"u}hrt. Dar{\"u}ber hinaus zeigen Bakterien im Biofilm einen weniger aggressiven Charakter, wie die Expression von Proteasen oder anderer Pathogenit{\"a}tsfaktoren, welches S. epidermidis dabei hilft, dem Immunsystem des Wirts zu entgehen. Diese neuen Ergebnisse zur Regulation der Genexpression im Biofilm und zur Rolle des Quorum-sensing Systems Agr in S. epidermidis tragen wesentlich zum Verst{\"a}ndnis der Pathogenit{\"a}t und der Physiologie dieses wichtigen nosokomialen Erregers bei. Sie bilden eine wichtige theroretische Grundlage f{\"u}r weiterf{\"u}hrende Studien, mit dem Ziel in Zukunft neue Therapie- und Pr{\"a}ventionsans{\"a}tze gegen S. epidermidis-Infektionen zu entwickeln.}, subject = {Staphylococcus epidermidis}, language = {de} } @phdthesis{Loessner2002, author = {L{\"o}ßner, Isabel}, title = {Die Rolle des bakteriellen Insertionselements IS256 bei der Modulation der Biofilmbildung in Staphylococcus epidermdis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-3258}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2002}, abstract = {Staphylococcus epidermidis z{\"a}hlt zu den h{\"a}ufigsten Erregern nosokomialer Infektionen im Zusammenhang mit implantierten Fremdk{\"o}rpern. Diese Bakterien zeigen eine außergew{\"o}hnliche ph{\"a}notypische und genotypische Variabilit{\"a}t, von der auch die Expression wichtiger virulenz- und resistenzassoziierter Gene betroffen ist. M{\"o}glicherweise verf{\"u}gen Staphylokokken damit {\"u}ber Anpassungsstrategien, die sie f{\"u}r das {\"U}berleben unter wechselnden Umweltbedingungen ben{\"o}tigen. In der vorliegenden Arbeit wurde die Rolle von bakteriellen Insertionssequenzen (IS) bei der Genomplastizit{\"a}t von Staphylococcus epidermidis untersucht. Im Mittelpunkt des Interesses stand dabei das Insertionselement IS256 und sein Einfluß auf die Biofilmbildung von Staphylococcus epidermidis. Die F{\"a}higkeit von S. epidermidis, an Oberfl{\"a}chen zu haften und Biofilme zu bilden ist von der Pr{\"a}senz und Expression des ica-Operons abh{\"a}ngig, das Enzyme f{\"u}r die Synthese eines Exopolysaccharids (PIA) kodiert. Die PIA-Produktion ist {\"a}ußerst variabel und hat damit Einfluß auf das Virulenz- und Kolonisierungsverhalten dieser Bakterien. Im ersten Teil dieser Arbeit wurde gezeigt, daß die ver{\"a}nderliche PIA-Produktion bei S. epidermidis im wesentlichen auf drei Mechanismen zur{\"u}ckzuf{\"u}hren ist, an denen das IS-Element IS256 urs{\"a}chlich beteiligt ist. Zun{\"a}chst konnte durch den Vergleich der IS256-spezifischen Hybridisierungsmuster eines biofilmbildenden S. epidermidis-Wildtypstammes und dessen PIA-negativer Spontanvarianten gezeigt werden, daß die multiplen IS256-Kopien im Genom dieses Stammes außerordentlich aktiv sind. Die n{\"a}here Analyse der Varianten ergab bei einem Teil der PIA-negativen Abk{\"o}mmlinge umfangreiche IS256-vermittelte genomische Umordnungen als Ursache f{\"u}r den Verlust der Biofilmbildung. Eine weitere Gruppe von Biofilm-negativen Varianten wies IS256-Insertionen im ica-Gencluster auf. Die Verteilung der Insertionsstellen im ica-Operon ließ darauf schließen, daß es sich bei dem icaC-Gen um einen Hot-spot f{\"u}r die Integration von IS256 handelt. Solche ica::IS256-Insertionen konnten bereits in zahlreichen S. epidermidis St{\"a}mmen nachgewiesen werden. Da diese Insertionen reversibel sind, bilden sie eine wesentliche Ursache f{\"u}r die Phasenvariation der Biofilmbildung von S. epidermidis. Bei einer dritten Gruppe von Varianten konnten Deletionen verschieden großer DNA-Abschnitte im S. epidermidis-Chromosom beobachtet werden, die zu einem Verlust der ica-Gene und damit der F{\"a}higkeit, Biofilme auszubilden, f{\"u}hrte. Um die Frage zu kl{\"a}ren, welche Gene in der Umgebung des ica-Operons liegen und durch die Deletion von bis zu 250 kb-großen DNA-Fragmenten verloren gehen, wurde eine Cosmid-Genbank des S. epidermidis -Wildtypstammes erstellt. Die durch Nukleotidsequenzierung erhaltenen Informationen wurden mit der in der Genom-Datenbank zur Verf{\"u}gung stehenden Sequenz des 1. A ZUSAMMENFASSUNG 2 Referenzstammes S. epidermidis RP62A verglichen und in einer Genkarte zusammengefaßt. Neben einzelnen Unterschieden zwischen den beiden S. epidermidis-St{\"a}mmen fiel vor allem auf, daß mehrere der von der Deletion betroffenen Leseraster f{\"u}r Proteine mit {\"A}hnlichkeiten zu oberfl{\"a}chenassoziierten Proteinen kodieren, die an der Adh{\"a}renz der Bakterien beteiligt sein k{\"o}nnten. Daneben finden sich aber auch Leserahmen mit {\"A}hnlichkeiten zu Transportsystemen und zahlreiche mobile genetische Elemente. Diese Ergebnisse lassen vermuten, daß das ica-Operon von S. epidermidis m{\"o}glicherweise Teil einer Pathogenit{\"a}tsinsel ist. Die Analyse der Deletionsrandbereiche einer Mutante ergab, daß der Verlust von mehr als 200 kb DNA durch homologe Rekombination zwischen zwei IS256-Elementen vermittelt wurde, die im Wildtypstamm in gleicher Orientierung zueinander vorlagen. Da IS256 offensichtlich eine wichtige Rolle bei der Genomplastizit{\"a}t von S. epidermidis spielt, konzentrierte sich der zweite Teil der Arbeit auf die Aufkl{\"a}rung des Transpositionsmechanismus dieses IS-Elements. Dabei konnte gezeigt werden, daß IS256 eine alternative Transpositionsreaktion nutzt, die durch die Bildung zirkul{\"a}rer, extrachromosomaler DNA-Molek{\"u}le gekennzeichnet ist. Diese DNA-Zirkel bestehen aus einer vollst{\"a}ndigen IS256-Kopie, bei der die beiden Enden des Elementes durch eine variable Anzahl von Nukleotiden fremder DNA als Br{\"u}cke miteinander verbunden sind. Es konnte gezeigt werden, daß diese kurzen DNA-Abschnitte aus der Nachbarschaft der fr{\"u}heren IS256-Insertionsstelle stammen, wobei sowohl stromaufw{\"a}rts als auch stromabw{\"a}rts liegende Nukleotidsequenzen nachgewiesen wurden. Neben diesen vollst{\"a}ndigen IS256-Zirkeln wurden aber auch Molek{\"u}le gefunden, bei denen entweder das rechte oder das linke Ende von IS256 fehlten. Die Daten legen nahe, daß beide IS256-Enden an der Zirkelbildung teilnehmen k{\"o}nnen und im Unterschied zu anderen zirkelbildenden Insertionssequenzen, die Strangtransferreaktion w{\"a}hrend der Zirkularisierung mit geringer Spezifit{\"a}t verl{\"a}uft. Ringf{\"o}rmige IS256-Molek{\"u}le konnten sowohl in S. epidermidis als auch in rekombinanten S. aureus und E. coli-St{\"a}mmen nachgewiesen werden, was auf eine untergeordnete Rolle speziesspezifischer Faktoren bei diesem Prozeß schließen l{\"a}ßt. Dagegen konnte durch die Einf{\"u}hrung einer Mutation in das putative Transposasegen des Elementes gezeigt werden, daß dieses Genprodukt f{\"u}r die IS256-Zirkularisierung essentiell ist. Es ist zu vermuten, daß die Bildung zirkul{\"a}rer IS256-Molek{\"u}le die Voraussetzung f{\"u}r die pr{\"a}zise Exzision des Elementes w{\"a}hrend der Phasenvariation der Biofilmproduktion bildet. Außerdem ist die Generierung stabiler Mutationen durch das Zur{\"u}cklassen von Teilen der duplizierten Zielsequenz oder durch die Vermittlung kleinerer Deletionen w{\"a}hrend der Zirkelbildung vorstellbar. Dar{\"u}ber hinaus bilden die multiplen Kopien des Elementes im Genom Kreuzungspunkte f{\"u}r homologe Rekombinationsereignisse. IS256 stellt damit sehr wahrscheinlich einen wesentlichen Faktor f{\"u}r die Flexibilit{\"a}t des Genoms von S. epidermidis dar. Die detaillierte Aufkl{\"a}rung der molekularen Mechanismen, die die Transposition von IS256 beeinflussen, k{\"o}nnten daher wertvolle Einblicke in die genetischen Anpassungsstrategien dieses bedeutenden nosokomialen Pathogens geben.}, subject = {Staphylococcus epidermis}, language = {de} }