@phdthesis{Gueta2012, author = {Gueta, Ronnie}, title = {Untersuchungen zur Struktur und Funktion von Channelrhodopsinen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-85693}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Die zur Gruppe der mikrobiellen Rhodopsine geh{\"o}renden lichtaktivierbaren Ionenkan{\"a}le Channelrhodopsin 1 (ChR1) und Channelrhodopsin 2 (ChR2) aus dem Augenfleck von C. rheinhardtii sind Bestandteile des visuellen Systems und an der Phototaxis beteiligt. Sie bestehen aus einem zytosolisch gelegenen C Terminus, dessen Funktion noch ungekl{\"a}rt ist und einem, f{\"u}r die Kanalaktivit{\"a}t verantwortlichen, N terminalen Bereich aus sieben Transmembranhelices. Der lichtsensitive Kofaktor all trans Retinal ist kovalent an einen Lysinrest (K257) der siebten Transmembranhelix gebunden. Bei einer Belichtung mit Blaulicht isomerisiert das Chromophor zur 13 cis Form, was eine Konformations{\"a}nderung und das {\"O}ffnen des Kanals zur Folge hat. Im Zuge dessen str{\"o}men ein und zweiwertige Kationen in die Zelle und eine Depolarisation findet statt. Um einen tieferen Einblick in Struktur und funktionelle Mechanismen zu bekommen, wurden Wildtyp und Mutanten von Ch1 und ChR2 heterolog in Oozyten von X. laevis exprimiert. In Bakteriorhodopsin bilden die Seitenketten von T90 und D115 eine f{\"u}r Stabilit{\"a}t und Funktion wichtige Wasserstoffbr{\"u}cke aus. Durch elektrophysiologische, fluoreszenzmikroskopische und biochemische Verfahren wurden Mutanten der entsprechenden Reste in ChR2 (C128, D156) untersucht. Diese zeigten eine deutlich verlangsamte Kinetik und eine 10 bis 100fache Erh{\"o}hung der Lichtempfindlichkeit. Die identischen Auswirkungen von Mutationen beider Reste deuten auf eine Bindung mit funktioneller Bedeutung zwischen C128 und D156 hin. Im Falle von ChR2 C128T, C128A und D156A konnte der Kanal nach Anregung mit Blaulicht, durch gr{\"u}nes und violettes Licht vorzeitig geschlossen werden. Diese Lichtqualit{\"a}ten entsprechen den Absorptionswellenl{\"a}ngen zweier Intermediate des Photozyklus von ChR2 (P390 und P520). Durch Ver{\"a}nderung des externen pH-Wertes konnten Hinweise auf eine protonenabh{\"a}ngige Gleichgewichtsreaktion dieser Intermediate gefunden werden. Auch in dem f{\"u}r Protonen h{\"o}her leitf{\"a}higen ChR1 konnten Hinweise auf eine Interaktion zwischen den Resten C167 und D195 gefunden werden. Elektrische Messungen von Mutanten zeigten eine deutliche Erh{\"o}hung des Photostroms bei verh{\"a}ltnism{\"a}ßig geringem Anstieg der Schließzeit. Der Einfluss dieser Mutationen auf die Kinetik war somit weniger ausgepr{\"a}gt als bei ChR2. Einen besonderen Stellenwert unter allen Channelrhodopsin Mutanten nehmen ChR2 D156C und ChR1 D195C ein. Mit einem Photostrom von 5 µA bei ChR1 D195C und bis zu 50 µA bei ChR2 D156C konnten f{\"u}r diese die h{\"o}chsten Photostr{\"o}me aller bisher charakterisierten ChR1 bzw. ChR2 Varianten nachgewiesen werden. Durch fluoreszenzmikroskopische Quantifizierung konnte f{\"u}r alle im Rahmen dieser Arbeit erstellten ChR1 und ChR2 Mutanten eine erh{\"o}hte Proteinmenge sowohl in Anwesenheit als auch Abwesenheit zus{\"a}tzlichen all trans Retinals w{\"a}hrend der Inkubation nachgewiesen werden. Die Fluoreszenzintensit{\"a}ten korrelierten hierbei mit der H{\"o}he der Stromamplituden und erreichten ein Maximum bei ChR2 D156C. Biochemische Experimente mit der Gesamtmembranfraktion von ChR2 exprimierenden Oozyten lieferten Hinweise auf eine dimere Quart{\"a}rstruktur von Channelrhodopsinen, was durch die Kristallstruktur einer Chim{\"a}re aus ChR1 und ChR2 von (Kato et al., 2012) best{\"a}tigt wurde. Unter der Annahme, dass die Poren in den Proteomeren gebildet werden, konnte eine gegenseitige Beeinflussung der Regionen in heterodimeren Kan{\"a}len aus ChR2 Wildtyp und Mutanten aufgrund kinetischer Unterschiede bei kurzer und langer Belichtung oder der Verwendung von unterschiedlichen Lichtintensit{\"a}ten nachgewiesen werden. Eine Voraussetzung f{\"u}r diesen Effekt ist eine synchrone Anregung beider Untereinheiten. Die Interaktion von Channelrhodopsin Untereinheiten konnte in vivo mithilfe der bimolekularen Fluoreszenzkomplementation nachgewiesen werden. Dabei zeigte sich, dass die Wechselwirkung nicht nur auf identische Untereinheiten in Homodimeren beschr{\"a}nkt ist, sondern auch bei Heterodimeren aus verschiedenen ChR2 Untereinheiten und sogar zwischen ChR2 und ChR1 m{\"o}glich ist.}, subject = {Ionenkanal}, language = {de} }