@phdthesis{Simon2011, author = {Simon, Christian Marc}, title = {Effects of the neurotrophic factors CNTF and IGF-1 in mouse models for spinal muscular atrophy and diabetic neuropathy}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-70207}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {In this study I investigate the role of Schwann cell and axon-derived trophic signals as modifiers of axonal integrity and sprouting in motoneuron disease and diabetic neuropathy (DNP). The first part of this thesis focuses on the role of the Schwann-cell-derived ciliary neurotrophic factor (CNTF) for compensatory sprouting in a mouse model for mild spinal muscular atrophy (SMA). In the second part, the role of the insulin-like growth factor 1 (IGF-1) and its binding protein 5 (IGFBP-5) is examined in the peripheral nerves of patients with DNP and in two corresponding mouse models. Proximal SMA is caused by homozygous loss or mutation of the SMN1 gene on human chromosome 5. The different forms of SMA can be divided into four groups, depending on the levels of SMN protein produced from a second SMN gene (SMN2) and the severity of the disease. Patients with milder forms of the disease, type III and type IV SMA, normally reach adulthood and regularly show enlargement of motor units, signifying the reinnervation of denervated muscle fibers. However, the underlying mechanisms are not understood. Smn+/- mice, a model of type III/IV SMA, are phenotypically normal, but they reveal progressive loss of motor neurons and denervation of motor endplates starting at 4 weeks of age. The progressive loss of spinal motor neurons reaches 50\% at 12 months but muscle strength is not reduced. The first evidence for axonal sprouting as a compensatory mechanism in these animals was the more than 2-fold increase in amplitude of single motor unit action potentials (SMUAP) in the gastrocnemius muscle. Confocal analysis confirmed pronounced sprouting of innervating motor axons. As CNTF is highly expressed in Schwann cells and known to be involved in sprouting, its role for this compensatory sprouting response and the maintenance of muscle strength in Smn+/- mice was investigated. Deletion of CNTF in this mouse model results in reduced sprouting and decline of muscle strength in Smn+/- Cntf-/- mice. These findings indicate that CNTF is necessary for a sprouting response and thus enhances the size of motor units in skeletal muscles of Smn+/- mice. DNP afflicting motor and sensory nerve fibers is a major complication in diabetes mellitus. The underlying cellular mechanisms of motor axon degeneration are poorly understood. IGFBP-5, an inhibitory binding protein for IGF-1, is highly upregulated in peripheral nerves in patients with DNP. The study investigates the pathogenic relevance of this finding in transgenic mice overexpressing IGFBP-5 in motor axons. These mice develop motor axonopathy similar to that seen in DNP. Motor axon degeneration is also observed in mice in which the IGF-1 receptor (IGF-1R) was conditionally depleted in motoneurons, indicating that reduced activity of IGF-1 on IGF-1R in motoneurons is responsible for the observed effect. These data provide evidence that elevated expression of IGFBP-5 in diabetic nerves reduces the availability of IGF-1 for IGF-1R on motor axons leading to progressive neurodegeneration, and thus offers novel treatment strategies.}, subject = {Spinale Muskelatrophie}, language = {en} }