@article{FeldheimKesslerFeldheimetal.2023, author = {Feldheim, Jonas and Kessler, Almuth F. and Feldheim, Julia J. and Schmitt, Dominik and Oster, Christoph and Lazaridis, Lazaros and Glas, Martin and Ernestus, Ralf-Ingo and Monoranu, Camelia M. and L{\"o}hr, Mario and Hagemann, Carsten}, title = {BRMS1 in gliomas — an expression analysis}, series = {Cancers}, volume = {15}, journal = {Cancers}, number = {11}, issn = {2072-6694}, doi = {10.3390/cancers15112907}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-319225}, year = {2023}, abstract = {The metastatic suppressor BRMS1 interacts with critical steps of the metastatic cascade in many cancer entities. As gliomas rarely metastasize, BRMS1 has mainly been neglected in glioma research. However, its interaction partners, such as NFκB, VEGF, or MMPs, are old acquaintances in neurooncology. The steps regulated by BRMS1, such as invasion, migration, and apoptosis, are commonly dysregulated in gliomas. Therefore, BRMS1 shows potential as a regulator of glioma behavior. By bioinformatic analysis, in addition to our cohort of 118 specimens, we determined BRMS1 mRNA and protein expression as well as its correlation with the clinical course in astrocytomas IDH mutant, CNS WHO grade 2/3, and glioblastoma IDH wild-type, CNS WHO grade 4. Interestingly, we found BRMS1 protein expression to be significantly decreased in the aforementioned gliomas, while BRMS1 mRNA appeared to be overexpressed throughout. This dysregulation was independent of patients' characteristics or survival. The protein and mRNA expression differences cannot be finally explained at this stage. However, they suggest a post-transcriptional dysregulation that has been previously described in other cancer entities. Our analyses present the first data on BRMS1 expression in gliomas that can provide a starting point for further investigations.}, language = {en} } @article{SalvadorKoepplHoermannetal.2023, author = {Salvador, Ellaine and K{\"o}ppl, Theresa and H{\"o}rmann, Julia and Sch{\"o}nh{\"a}rl, Sebastian and Bugaeva, Polina and Kessler, Almuth F. and Burek, Malgorzata and Ernestus, Ralf-Ingo and L{\"o}hr, Mario and Hagemann, Carsten}, title = {Tumor Treating Fields (TTFields) induce cell junction alterations in a human 3D in vitro model of the blood-brain barrier}, series = {Pharmaceutics}, volume = {15}, journal = {Pharmaceutics}, number = {1}, issn = {1999-4923}, doi = {10.3390/pharmaceutics15010185}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-304830}, year = {2023}, abstract = {In a recent study, we showed in an in vitro murine cerebellar microvascular endothelial cell (cerebEND) model as well as in vivo in rats that Tumor-Treating Fields (TTFields) reversibly open the blood-brain barrier (BBB). This process is facilitated by delocalizing tight junction proteins such as claudin-5 from the membrane to the cytoplasm. In investigating the possibility that the same effects could be observed in human-derived cells, a 3D co-culture model of the BBB was established consisting of primary microvascular brain endothelial cells (HBMVEC) and immortalized pericytes, both of human origin. The TTFields at a frequency of 100 kHz administered for 72 h increased the permeability of our human-derived BBB model. The integrity of the BBB had already recovered 48 h post-TTFields, which is earlier than that observed in cerebEND. The data presented herein validate the previously observed effects of TTFields in murine models. Moreover, due to the fact that human cell-based in vitro models more closely resemble patient-derived entities, our findings are highly relevant for pre-clinical studies.}, language = {en} }