@phdthesis{Andreska2021, author = {Andreska, Thomas}, title = {Effects of dopamine on BDNF / TrkB mediated signaling and plasticity on cortico-striatal synapses}, doi = {10.25972/OPUS-17431}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-174317}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Progressive loss of voluntary movement control is the central symptom of Parkinson's disease (PD). Even today, we are not yet able to cure PD. This is mainly due to a lack of understanding the mechanisms of movement control, network activity and plasticity in motor circuits, in particular between the cerebral cortex and the striatum. Brain-derived neurotrophic factor (BDNF) has emerged as one of the most important factors for the development and survival of neurons, as well as for synaptic plasticity. It is thus an important target for the development of new therapeutic strategies against neurodegenerative diseases. Together with its receptor, the Tropomyosin receptor kinase B (TrkB), it is critically involved in development and function of the striatum. Nevertheless, little is known about the localization of BDNF within presynaptic terminals in the striatum, as well as the types of neurons that produce BDNF in the cerebral cortex. Furthermore, the influence of midbrain derived dopamine on the control of BDNF / TrkB interaction in striatal medium spiny neurons (MSNs) remains elusive so far. Dopamine, however, appears to play an important role, as its absence leads to drastic changes in striatal synaptic plasticity. This suggests that dopamine could regulate synaptic activity in the striatum via modulation of BDNF / TrkB function. To answer these questions, we have developed a sensitive and reliable protocol for the immunohistochemical detection of endogenous BDNF. We find that the majority of striatal BDNF is provided by glutamatergic, cortex derived afferents and not dopaminergic inputs from the midbrain. In fact, we found BDNF in cell bodies of neurons in layers II-III and V of the primary and secondary motor cortex as well as layer V of the somatosensory cortex. These are the brain areas that send dense projections to the dorsolateral striatum for control of voluntary movement. Furthermore, we could show that these projection neurons significantly downregulate the expression of BDNF during the juvenile development of mice between 3 and 12 weeks. In parallel, we found a modulatory effect of dopamine on the translocation of TrkB to the cell surface in postsynaptic striatal Medium Spiny Neurons (MSNs). In MSNs of the direct pathway (dMSNs), which express dopamine receptor 1 (DRD1), we observed the formation of TrkB aggregates in the 6-hydroxydopamine (6-OHDA) model of PD. This suggests that DRD1 activity controls TrkB surface expression in these neurons. In contrast, we found that DRD2 activation has opposite effects in MSNs of the indirect pathway (iMSNs). Activation of DRD2 promotes a rapid decrease in TrkB surface expression which was reversible and depended on cAMP. In parallel, stimulation of DRD2 led to induction of phospho-TrkB (pTrkB). This effect was significantly slower than the effect on TrkB surface expression and indicates that TrkB is transactivated by DRD2. Together, our data provide evidence that dopamine triggers dual modes of plasticity on striatal MSNs by acting on TrkB surface expression in DRD1 and DRD2 expressing MSNs. This surface expression of the receptor is crucial for the binding of BDNF, which is released from corticostriatal afferents. This leads to the induction of TrkB-mediated downstream signal transduction cascades and long-term potentiation (LTP). Therefore, the dopamine-mediated translocation of TrkB could be a mediator that modulates the balance between dopaminergic and glutamatergic signaling to allow synaptic plasticity in a spatiotemporal manner. This information and the fact that TrkB is segregated to persistent aggregates in PD could help to improve our understanding of voluntary movement control and to develop new therapeutic strategies beyond those focusing on dopaminergic supply.}, subject = {Brain-derived neurotrophic factor}, language = {en} } @phdthesis{Herbort2008, author = {Herbort, Oliver}, title = {Encoding Redundancy for Task-dependent Optimal Control : A Neural Network Model of Human Reaching}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-26032}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {The human motor system is adaptive in two senses. It adapts to the properties of the body to enable effective control. It also adapts to different situational requirements and constraints. This thesis proposes a new neural network model of both kinds of adaptivity for the motor cortical control of human reaching movements, called SURE_REACH (sensorimotor unsupervised learning redundancy resolving control architecture). In this neural network approach, the kinematic and sensorimotor redundancy of a three-joint planar arm is encoded in task-independent internal models by an unsupervised learning scheme. Before a movement is executed, the neural networks prepare a movement plan from the task-independent internal models, which flexibly incorporates external, task-specific constraints. The movement plan is then implemented by proprioceptive or visual closed-loop control. This structure enables SURE_REACH to reach hand targets while incorporating task-specific contraints, for example adhering to kinematic constraints, anticipating the demands of subsequent movements, avoiding obstacles, or reducing the motion of impaired joints. Besides this functionality, the model accounts for temporal aspects of human reaching movements or for data from priming experiments. Additionally, the neural network structure reflects properties of motor cortical networks like interdependent population encoded body space representations, recurrent connectivity, or associative learning schemes. This thesis introduces and describes the new model, relates it to current computational models, evaluates its functionality, relates it to human behavior and neurophysiology, and finally discusses potential extensions as well as the validity of the model. In conclusion, the proposed model grounds highly flexible task-dependent behavior in a neural network framework and unsupervised sensorimotor learning.}, subject = {Bewegungssteuerung}, language = {en} } @misc{Lenhard2002, type = {Master Thesis}, author = {Lenhard, Alexandra}, title = {Intra- and intermanual transfer of adaptation to unnoticed virtual displacement under terminal and continuous visual feedback}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-23889}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2002}, abstract = {Versuchspersonen trainierten mit der rechten Hand Zielbewegungen zu verschiedenen Zielen unter terminalem oder kontinuierlichem visuellem Feedback. F{\"u}r eines der Ziele wurde die visuelle R{\"u}ckmeldung so manipuliert, dass Bewegungen zu diesem Ziel k{\"u}rzer wirkten, als sie tats{\"a}chlich waren. Nach dem Training sollten die gleichen Ziele sowohl mit der trainierten rechten als auch mit der untrainierten linken Hand erreicht werden. Bewegungen der rechten Hand passten sich an die unbemerkte visuelle Transformation an. Die Adaptation war unter kontinuierlichem Feedback schw{\"a}cher als unter terminalem. Außerdem generalisierte die Adapation nur unter terminalem, aber nicht unter kontinuierlichem Feedback, auf andere Zielbewegungen in die gleiche Richtung, aber nicht auf Zielbewegungen in die entgegengesetzte Richtung. Bewegungen der untrainierten linken Hand zeigten qualitativ die gleichen adaptationsbedingten Ver{\"a}nderungen wie Bewegungen der rechten Hand. Die Ergebnisse sprechen f{\"u}r die Annahme, dass beim Training der rechten Hand eine effektorunabh{\"a}ngige r{\"a}umliche Repr{\"a}sentation ver{\"a}ndert wird, auf die bei der Steuerung beider H{\"a}nde zur{\"u}ckgegriffen wird.}, subject = {Motorisches Lernen}, language = {en} } @phdthesis{OenalHartmann2011, author = {{\"O}nal-Hartmann, Cigdem}, title = {Emotional Modulation of Motor Memory Formation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-64838}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Hintergr{\"u}nde: Wie eine Vielzahl von Studien belegt, kann das explizite Ged{\"a}chtnis, das die bewusste Erinnerung an enkodierte Informationen beinhaltet, durch Emotionen beeinflusst werden, und zwar {\"u}ber den Einfluss auf verschiedene Verarbeitungsebenen (Enkodierung, Konsolidierung, Abruf usw.). Bisher wenig untersucht ist, ob und wie Emotionen Vorg{\"a}nge der motorischen Ged{\"a}chtnisbildung, die nicht auf bewusster Erinnerung beruhen und sich stattdessen durch Ver{\"a}nderungen im Verhalten darstellen, modulieren. Experiment 1: Das Ziel des ersten Experimentes war es, den Einfluss von Emotionen auf motorisches Lernen zu untersuchen. Vier Gruppen von Probanden mussten in einer motorischen Lernaufgabe schnelle, seitliche Bewegungen mit dem Daumen ausf{\"u}hren. W{\"a}hrend dieser Aufgabe h{\"o}rten die Probanden emotionale Kl{\"a}nge, die in Valenz und Arousal variierten: 1. Valenz negativ/ Arousal niedrig (V-/A-), 2. Valenz negativ/ Arousal hoch (V-/A+), 3. Valenz positiv/ Arousal niedrig (V+/A-), 4. Valenz positiv/ Arousal hoch (V+/A+). Die deskriptive Analyse aller Daten sprach f{\"u}r beste Ergebnisse f{\"u}r das motorische Lernen in der Bedingung V-/A-, aber die Unterschiede zwischen den Bedingungen waren nicht signifikant. Die Interaktion zwischen Valenz und Arousal emotionaler T{\"o}ne scheint demnach motorische Enkodierungsprozesse zu modulieren, jedoch m{\"u}ssen zuk{\"u}nftige Studien mit unterschiedlichen emotionalen Stimuli die Annahme weiter untersuchen, dass negative Stimuli mit niedrigem Arousal w{\"a}hrend der Enkodierung einen f{\"o}rdernden Effekt auf das motorische Kurzzeitged{\"a}chtnis haben. Experiment 2: Die Absicht des zweiten Experimentes war es, die Auswirkungen emotionaler Interferenzen auf die Konsolidierung beim Sequenzlernen zu untersuchen. Sechs Gruppen von Probanden trainierten zuerst in getrennten Sitzungen eine SRTT-Aufgabe (serial reaction time task). Um die Konsolidierung der neu erlernten Fertigkeit zu modulieren, wurden die Probanden nach dem Training einer von drei unterschiedlichen Klassen emotionaler Stimuli (positiv, negativ oder neutral) ausgesetzt. Diese bestanden aus einem Set emotionaler Bilder, die mit emotional kongruenten Musikst{\"u}cken oder neutralen Kl{\"a}ngen kombiniert waren. Bei den Probandengruppen wurde die emotionale Interferenz nach zwei unterschiedlichen Zeitintervallen realisiert, entweder direkt nach der Trainingssitzung oder sechs Stunden sp{\"a}ter. 72 Stunden nach der Trainingssitzung wurde jede Gruppe erneut mit der SRTT-Aufgabe getestet. Die Leistung in diesem Nachtest wurde mittels Reaktionszeit und Genauigkeit bei der Ausf{\"u}hrung der Zielsequenz analysiert. Die emotionale Interferenz beeinflusste weder die Nachtestergebnisse f{\"u}r die Reaktionszeit noch die f{\"u}r die Genauigkeit. Allerdings konnte eine Steigerung der expliziten Sequenzerkennung durch erregende negative Stimuli festgestellt werden, wenn diese direkt nach der ersten Trainingseinheit (0h) dargeboten wurden. Diese Ergebnisse lassen vermuten, dass die Konsolidierung der expliziten Aspekte prozeduralen Lernens in einer st{\"a}rkeren Wechselwirkung mit emotionalen Interferenzen stehen k{\"o}nnte als die der impliziten Aspekte. Die Konsolidierung unterschiedlicher Ebenen des Fertigkeitserwerbs k{\"o}nnte demnach von unterschiedlichen Mechanismen gesteuert werden. Da Performanz und explizites Sequenzerkennen nicht korrelierten, vermuten wir, dass implizite und explizite Modalit{\"a}ten bei der Durchf{\"u}hrung der SRTT-Aufgabe nicht komplement{\"a}r sind. Experiment 3: Es sollte untersucht werden, ob es eine Pr{\"a}ferenz der linken Gehirnhemisph{\"a}re bei der Kontrolle von Flexionsreaktionen auf positive Stimuli gibt und der rechten Hemisph{\"a}re bei der Kontrolle von Extensionsreaktionen auf negative Stimuli. Zu diesem Zweck sollten rechtsh{\"a}ndige Probanden einen Joystick zu sich ziehen oder von sich weg dr{\"u}cken, nachdem sie einen positiven oder negativen Stimulus in ihrem linken oder rechten Gesichtsfeld gesehen hatten. Die Flexionsreaktionen waren bei positiven Stimuli schneller, Extensionsreaktion hingegen bei negativen Stimuli. Insgesamt war die Performanz am schnellsten, wenn die emotionalen Stimuli im linken Gesichtsfeld pr{\"a}sentiert wurden. Dieser Vorrang der rechten Gehirnhemisph{\"a}re war besonders deutlich f{\"u}r negative Stimuli, wohingegen die Reaktionszeiten auf positive Bilder keine hemisph{\"a}rische Differenzierung zeigten. Wir konnten keine Interaktion zwischen Gesichtsfeld und Reaktionstyp belegen, auch fand sich keine Dreifachinteraktion zwischen Valenz, Gesichtsfeld und Reaktionstyp. In unserem experimentellen Kontext scheint die Interaktion zwischen Valenz und Gesichtsfeld st{\"a}rker zu sein als die Interaktion zwischen Valenz und motorischem Verhalten. Auf Grund dieser Ergebnisse vermuten wir, dass unter gewissen Bedingungen eine Hierarchisierung der asymmetrischen Muster Vorrang hat, die m{\"o}glicherweise andere vorhandene Asymmetrien maskieren k{\"o}nnte.}, subject = {Motorisches Lernen}, language = {en} }