@phdthesis{Schulz2012, author = {Schulz, Alexander}, title = {Molekulare Mechanismen des protonengekoppelten Zuckertransportes in Mesophyllvakuolen von Arabidopsis thaliana}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-85596}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Im Rahmen dieser Arbeit konnten neue Erkenntnisse zum Zuckertransport {\"u}ber die Vakuolenmembran von Arabidopsis thaliana sowie dessen Energetisierung durch die V-ATPase erlangt werden. Hierf{\"u}r wurden Patch-Clamp-Experimente konzipiert, die eine direkte Erfassung der Transportmechanismen, Transporteigenschaften sowie Triebkr{\"a}fte des vakuol{\"a}ren Zuckertransportes erm{\"o}glichten. Zus{\"a}tzlich wurden Lokalisations- und Interaktionsstudien zu ausgew{\"a}hlten Transportern mit Hilfe der konfokalen Laser Scanning Mikroskopie durchgef{\"u}hrt. Im Einzelnen wurden folgende Aspekte hinsichtlich des pflanzlichen Zuckertransports und dessen Energetisierung bearbeitet. Mittels der Patch-Clamp-Technik konnten vakuol{\"a}re glucose- und saccharose-induzierte Protonen-Transportkapazit{\"a}ten in Mesophyllvakuolen von Wildtyp-pflanzen aufgel{\"o}st werden, die eindeutig einen Antiportmechanismus f{\"u}r beide Zucker zur Beladung der Vakuole vorschlagen. Dabei zeigten die Glucose- und Saccharoseantiporter eine geringe Affinit{\"a}t und hohe Transportkapazit{\"a}t f{\"u}r den jeweiligen Zucker. Auf molekularer Ebene konnte die protonengekoppelte Glucose- und Saccharoseaufnahme in die Vakuolen maßgeblich dem putativen Monosaccharid¬transporter AtTMT1/2 zugeordnet werden, der folglich als erster Glucose-Saccharose/Protonen-Antiporter identifiziert wurde. Im Zuge dieser Untersuchungen wurden der Zucker- und der pH-Gradient als Triebkr{\"a}fte der Zuckertransportaktivit{\"a}t herausgearbeitet. In diesem Zusammenhang konnte ferner ein Beitrag zur quan¬titativen Charakterisierung der V-ATPase geleistet werden, welche den Einfluss der V-ATPase aufgrund ihrer pH-abh{\"a}ngigen H+-Pumpaktivit{\"a}t auf die pH-Hom{\"o}ostase belegt. Demzufolge scheint die V-ATPase als pH-regulierter Energielieferant f{\"u}r die Zuckertransporter zu fungieren. Dar{\"u}ber hinaus wurde die mitogenaktivierte Proteinkinase AtVIK1 als potentieller Regulationsfaktor von AtTMT1 identifiziert. Dies gelang durch den Nachweis einer spezifischen physikalischen Interaktion zwischen AtTMT1 und AtVIK1 mittels der Bimolekularen Fluoreszenzkomplemen¬tation. Neben der AtTMT1/2-vermittelten Aufnahme der beiden Zucker Glucose und Saccharose wurde ebenso die Zuckerentlassung aus der Vakuole n{\"a}her charakterisiert. Mit Hilfe vergleichender Patch-Clamp-Analysen von verschiedenen Zuckertransporter-Verlustmutanten konnte AtERDl6 als Glucose/Protonen-Symporter identifiziert werden, der sich f{\"u}r den Glucoseexport aus der Vakuole verantwortlich zeigt. In Bezug auf den Saccharosetransport aus der Vakuole konnte erstmals die Saccharose/Protonen-Symportfunktion von AtSUC4 in planta nach dessen transienter {\"U}berexpression in Zuckertransporter-Verlustmutanten eindeutig aufgel{\"o}st und nachgewiesen werden. Desweiteren offenbarten die hier erlangten Ergebnisse bez{\"u}glich der Glucose/Saccharose-Beladung und -Entladung von Mesophyllvakuolen, dass weitere protonengekoppelte Zuckertransporter, neben AtTMT1/2 and AtERDl6, in diesem Zelltyp existieren, deren molekulare Natur es jedoch noch gilt herauszufinden.}, subject = {Ackerschmalwand}, language = {de} } @phdthesis{Wittek2013, author = {Wittek, Anke}, title = {Vergleichende elektrophysiologische Untersuchungen zweier Saccharose/H +-Symporter, ZmSUT1 (Zea mays) und UmSrt1 (Ustilago maydis)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-85279}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Bei der Betrachtung des Pathosystems Ustilago maydis/Zea mays kommen sich Proteine unterschiedlicher Organismen sehr nahe. Die derzeitige Hypothese zur lokalen Szenerie in der ausgebildeten Interaktionszone von Pflanze und Pilz spricht zwei SUC-Transportern dabei wichtige Rollen in der Pflanze/Pilz Interaktion zu. UmSrt1, der erste beschriebene pilzliche SUC-Transporter aus dem Maispathogen Ustilago maydis (Wahl et al., 2010) und ZmSUT1, der aus Zea mays stammende low affinity SUC-Transporter (Carpaneto et al., 2005) werden als Gegenspieler im Konkurrenzkampf um die extrazellul{\"a}re SUC beschrieben (Wahl et al., 2010). ZmSUT1 ist in der Plasmamembran der Geleitzellen lokalisiert und dort f{\"u}r die Beladung des Phloems mit SUC aus dem Apoplasten zust{\"a}ndig. UmSrt1, f{\"u}r den eine Lokalisation in der Plasmamembran in Hefen gezeigt werden konnte, sorgt als „high affinity" Transporter mit dem Import extrazellul{\"a}rer SUC f{\"u}r die Kohlenhydratversorgung der pilzlichen Entwicklung und Ern{\"a}hrung (Wahl et al., 2010). Gegenstand der vorliegenden Arbeit waren vergleichende elektrophysiologische Charakterisierungen der SUC-Transporteigenschaften von ZmSUT1 und UmSrt1. Durch heterologe Expression der Proteine in Xenopus Oozyten und anschließende Messungen unter Verwendung der DEVC-Technik wurden die Eigenschaften des SUC-Transports beider SUC-Transporter im Hinblick auf ihre Konzentrations-, pH-, Spannungsabh{\"a}ngigkeit, sowie auf die Substratspezifit{\"a}t hin untersucht. Diese vergleichenden Studien zur Charakterisierung beider Transportproteine ergaben ihren physiologischen Aufgaben entsprechende Unterschiede. ZmSUT1 konnte ein Verhalten als „low affinity/high capacity" Transporter mit Affinit{\"a}ten gegen{\"u}ber SUC im millimolaren Bereich mit einer spannungsunabh{\"a}ngigen Transportaktivit{\"a}t best{\"a}tigt werden. Zudem konnte die Transportaktivit{\"a}t als stark H+-abh{\"a}ngig beschrieben werden (Carpaneto et al., 2005), deren Optimum nahe des physiologischen Bereichs des Apoplasten bestimmt werden konnte. Des Weiteren wurden Untersuchungen zur Substratspezifit{\"a}t angefertigt, die ZmSUT1 eindeutig eine Typ-II SUT Zugeh{\"o}rigkeit (Sivitz et al., 2005; Reinders et al., 2006; Sun et al., 2010) mit einem engen Substratspektrum belegen. F{\"u}r UmSrt1 dagegen wurde ein Transportverhalten als „high affinity/low capacity" Transporter mit h{\"o}heren Affinit{\"a}ten gegen{\"u}ber SUC im mikromolaren Bereich ermittelt (Wahl et al., 2010). Dar{\"u}ber hinaus beschreiben die Ergebnisse dieser Arbeit eine weitestgehend H+-unabh{\"a}ngige Transportaktivit{\"a}t in einem weiten pH-Wert Bereich. Im Profil der Substratspezifit{\"a}t zeigte sich neben SUC als prim{\"a}rem Substrat ein eher unspezifischer Transport weiterer Mono-, Di- und Trisaccharide. Die postulierte SUC-Spezifit{\"a}t von UmSrt1 (Wahl et al., 2010) konnte mit den vorliegenden Ergebnissen nicht best{\"a}tigt werden. Mit einem effektivem Import von SUC mittels UmSrt1 in den Pilz umgeht U. maydis die Hydrolyse von SUC im pflanzlichen Apoplasten und damit die Bildung extrazellul{\"a}rer Glukose, die ein Signal in der pflanzlichen Pathogenabwehr darstellt (Herbers et al., 1996b; Ehness et al., 1997; Kocal et al., 2008). Somit scheint es f{\"u}r Ustillago maydis m{\"o}glich zu sein, eine von der Wirtspflanze Zea mays weitestgehend „unbemerkte" Aufnahme von Kohlenhydraten {\"u}ber einen breiten pH-Wert Bereich bewerkstelligen zu k{\"o}nnen. Die vielfach h{\"o}heren Affinit{\"a}ten gegen{\"u}ber SUC und H+ verschaffen UmSrt1 im Konkurrenzkampf um die extrazellul{\"a}re SUC einen klaren Vorteil gegen{\"u}ber ZmSUT1. Diese Daten deuten darauf hin, dass U. maydis auch unter Stressbedingungen der Pflanze und damit resultierenden Schwankungen der H+-Konzentrationen in der Lage ist, den SUC-Import f{\"u}r seine eigene Ern{\"a}hrung sicher zu stellen. Das Gebiet posttranslationaler Modifikationen von SUC-Transportern ist weitestgehend unerforscht. In planta Versuche deuteten darauf hin, dass Redox-aktive Substanzen den Zuckertransport beeinflussen. Im Oozytensystem wurde deshalb die Aktivit{\"a}t von ZmSUT1 in Anwesenheit der Redox-aktiven Substanzen GSH, GSSG, H2O2 und DTT getestet. Der geringf{\"u}gige Einfluss dieser Substanzen auf SUC-induzierte Str{\"o}me von ZmSUT1 deuten jedoch darauf hin, dass SUC-Transporter nicht ein direktes Ziel von Redox-Ver{\"a}nderungen darstellen. Um die Struktur des pflanzlichen SUC-Transporters ZmSUT1 n{\"a}her zu beleuchten und die an der Bindung von SUC involvierten Aminos{\"a}uren zu identifizieren, wurde auf der Basis der bereits bekannten Struktur von LacY aus E.coli, ebenfalls einem Vertreter der MFS, ein 3D-Modell f{\"u}r ZmSUT1 erstellt. Die AS, die in LacY an der Bindung des Substrats beteiligt sind, wurden bereits identifiziert (Vadyvaloo et al., 2006). Darauf aufbauend wurden im Rahmen einer Mutagenesestudie gezielt AS im Protein ZmSUT1 ausgew{\"a}hlt, die in verwandten SUC-Transportern konserviert und in homolgen Positionen zu den in LacY bereits identifizierten AS vorliegen. In diesen ausgew{\"a}hlten Positionen wurden mittels gerichteter Mutagenese acht Mutanten generiert. Die elektrophysiologische Charakterisierung dieser ZmSUT1-Mutanten identifizierte zwei Mutanten, die in der SUC-/H+-Translokation gest{\"o}rt waren sowie zwei WT-{\"a}hnliche. Es konnten vier Mutanten mit erniedrigten Affinit{\"a}ten gegen{\"u}ber SUC identifiziert werden, von denen zwei zus{\"a}tzlich Ver{\"a}nderungen in ihrer Substratspezifit{\"a}t aufweisen. Diese vier AS werden als m{\"o}gliche Kandidaten angesehen, an der Bindung und/oder Translokation von SUC beteiligt zu sein.}, subject = {Saccharose}, language = {de} } @phdthesis{Derrer2013, author = {Derrer, Carmen}, title = {Biophysikalische Aufschl{\"u}sselung des Transportzyklus von ZmSUT1, einem H+/Saccharose Symporter aus Mais}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-78949}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Die Mesophyllzellen vollentwickelter Bl{\"a}tter stellen den Hauptort der Photosynthese h{\"o}herer Pflanzen dar. Diese autotrophen Zellen (source-Gewebe) produzieren einen {\"U}berschuss an Kohlenstoff-Assimilaten, die f{\"u}r die Versorgung anderer heterotropher Gewebe und Organe, wie z.B. Fr{\"u}chten oder Wurzeln (sink-Gewebe), genutzt werden. Das Langstrecken-Transportsystem h{\"o}herer Pflanzen, das Phloem, transportiert die Photoassimilate durch den gesamten Pflanzenk{\"o}rper. Der zwischen source- und sink-Geweben herrschende hydrostatische Druckunterschied wird von osmotisch aktiven Substanzen generiert und treibt den Massenstrom in diesem Gef{\"a}ßsystem an. Der nicht-reduzierende Zucker Saccharose stellt in den meisten h{\"o}heren Pflanzen die Haupttransportform der photosynthetisch hergestellten Kohlenstoffverbindungen im Phloem dar. Protonen-gekoppelte Saccharosetransporter reichern Saccharose im Phloemgewebe mit einer 1000-fach h{\"o}heren Konzentration (bis zu 1M), verglichen zum extrazellul{\"a}ren Raum, an. Aufgrund dieser einzigartigen F{\"a}higkeit {\"u}ben diese Carrier eine essentielle Rolle in der Phloembeladung aus und gew{\"a}hrleisten so die Versorgung der gesamten Pflanze mit Photoassimilaten. Saccharosetransporter k{\"o}nnen diese Energie-aufw{\"a}ndige Aufgabe nur durch eine enge Kopplung des zeitgleichen Transports von Saccharose und Protonen bewerkstelligen. Molekulare Einblicke in diesen physiologisch außerordentlich wichtigen Prozess der Zuckertranslokation sind jedoch bis heute immer noch sehr l{\"u}ckenhaft. Im Rahmen dieser Arbeit wurde der Saccharosetransporter ZmSUT1 aus Mais im heterologen Expressionssystem der Xenopus Oozyten exprimiert. ZmSUT1 generiert in Oozyten ungew{\"o}hnlich hohe Str{\"o}me im µA-Bereich, was diesen Zuckertransporter f{\"u}r pr{\"a}zise elektrophysiologische Messungen geradezu pr{\"a}destiniert. Erste elektrophysiologische Messungen zur Substratspezifit{\"a}t zeigten, dass der synthetische S{\"u}ßstoff Sucralose kein Substrat f{\"u}r ZmSUT1 darstellt. Dar{\"u}ber hinaus gelang es, Sucralose als kompetitiven Inhibitor der Saccharose-induzierten Transportstr{\"o}me von ZmSUT1 zu identifizieren. Die Verwendung dieses Saccharose-Derivats erm{\"o}glichte es, den Transportmechanismus in einzelne Schritte zu zerlegen und diese zu quantifizieren. Durch hochaufl{\"o}sende elektrophysiologische Messungen konnten transiente Str{\"o}me in der Abwesenheit jeglichen Substrats detektiert werden, die jedoch in der Anwesenheit s{\"a}ttigender Saccharosekonzentrationen erloschen. Diese sogenannten presteady-state Str{\"o}me (Ipre) zeichneten sich durch eine schnelle und eine langsame Komponente in der Relaxationskinetik der Str{\"o}me aus. Ipre konnten mit dem Binden der Protonen an den Transporter innerhalb des elektrischen Feldes der Membran in Verbindung gebracht werden. Somit f{\"u}hrte die Analyse der presteady-state Str{\"o}me zur Aufkl{\"a}rung des ersten Schritts - dem Binden der Protonen - im Transportzyklus von ZmSUT1. Interessanterweise reduzierte der kompetitive Inhibitor Sucralose die langsame Komponente der presteady-state Str{\"o}me in Abh{\"a}ngigkeit von der Sucralosekonzentration, w{\"a}hrend die schnelle Komponente von Ipre unbeeinflusst blieb. Um dieses Verhalten erkl{\"a}ren zu k{\"o}nnen und einen weiteren Schritt im Transportzyklus von ZmSUT1 zu studieren, wurde die Methode der Spannungsklemmen-Fluorometrie zur Untersuchung der Konformations{\"a}nderung von ZmSUT1 etabliert. Tats{\"a}chlich gelang es, zum ersten Mal die intramolekulare Bewegung eines pflanzlichen Transportproteins zu visualisieren. Detaillierte Analysen zeigten, dass die Konformations{\"a}nderungen von ZmSUT1, unabh{\"a}ngig von Saccharose, mit einer schwachen pH-Abh{\"a}ngigkeit auftraten. Interessanterweise wurde die Beweglichkeit des Transporters durch die Applikation des kompetitiven Inhibitors Sucralose deutlich reduziert. Dieser Effekt deutet, zusammen mit dem Sucralose-induzierten Verschwinden der langsamen Komponente der Ipre darauf hin, dass Sucralose den Transporter in seiner ausw{\"a}rts-gerichteten Konformation arretiert. Somit repr{\"a}sentiert die Zug{\"a}nglichkeit der extrazellul{\"a}ren Protonenbindestelle und folglich die Konformations{\"a}nderung den Geschwindigkeits-bestimmenden Schritt im Reaktionszyklus von ZmSUT1. Zusammenfassend gelang es in dieser Arbeit, das Binden der Protonen und den Zusammenhang mit der Bewegung des Proteins, von einer ausw{\"a}rts-gerichteten in eine einw{\"a}rts-gerichtete Konformation, aufzukl{\"a}ren. Mit der Hilfe der Erkenntnisse aus dieser Arbeit konnte ein mechanistisches Modell f{\"u}r den Transportzyklus von ZmSUT1 entwickelt werden, anhand dessen alle Ergebnisse schl{\"u}ssig erkl{\"a}rt und diskutiert werden konnten.}, subject = {Mais}, language = {de} } @phdthesis{Krause2012, author = {Krause, Diana}, title = {Transport der Hauptosmotika an der vakuol{\"a}ren Membran von Schließzellen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-75043}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Im Rahmen der vorliegenden Arbeit wurden neue Einblicke bez{\"u}glich des Transport-prozesses vakuol{\"a}rer Protonenpumpen, Zuckertransporter und des SV-Kanals von Arabidopsis thaliana gewonnen: 1. Mittels Patch-clamp-Technik wurden ATP- und Pyrophosphat-induzierte Pump-str{\"o}me an Mesophyllvakuolen des Wildtyps gemessen. Die durch ATP hervor-gerufenen Pumpstr{\"o}me konnten durch den spezifischen V-ATPase-Inhibitor Concanamycin A vollst{\"a}ndig inhibiert werden. Messungen an der V-ATPase-Doppelmutante vha-a2-vha-a3 hingegen zeigten eine kaum vorhandene ATPase-Aktivit{\"a}t auf. Die vakuol{\"a}re Pyrophosphatase-Aktivit{\"a}t der vha-a2-vha-a3-Mutante war mit dem WT vergleichbar und konnte die verminderten Pumpstr{\"o}me der V-ATPase nicht kompensieren. Zudem wurde an A. thaliana WT-Pflanzen die Expressionsrate und Pumpstromdichte der V-ATPase von Schließzellen und Mesophyllzellen untersucht. Dabei konnte bei Schließzellen eine h{\"o}here Expressionsrate sowie Pumpleistung im Vergleich zu Mesophyllzellen detektiert werden, wodurch an der vakuol{\"a}ren Membran von Schließzellen eine starke protonenmotorische Kraft generiert werden kann. 2. Des Weiteren wurden die Transporteigenschaften des im Tonoplasten lokalisierten Transportproteins AtINT1 an Arabidopsis Mesophyllzellen des Wildtyps n{\"a}her untersucht. Unter inversen pH-Wert-Bedingungen konnte AtINT1 als Symporter identifiziert werden, welcher myo-Inositol H+-gekoppelt aus der Vakuole in das Cytosol transportiert. 3. {\"U}berdies wurde eine elektrophysiologische Charakterisierung des AtSUC4-Transporters durchgef{\"u}hrt. Unter einem physiologischen Protonengradienten konnte bei WT- und Atsuc4.1-Vakuolen ausschließlich ein Saccharose/H+ ge-triebener Antiportmechanismus detektiert werden. Im Gegensatz dazu zeigten 60 \% der AtSUC4-{\"U}E unter inversen pH-Gradienten w{\"a}hrend Saccharose-Applikation Str{\"o}me, die auf einen Saccharose/H+-Symportmechanismus hinweisen. Bei der Atsuc4.1-Verlustmutante hingegen konnten unter gleichen L{\"o}sungsbedingungen ausschließlich Str{\"o}me detektiert werden, die mit einem Saccharose/H+-gekoppelten Antiportmechanismus in Einklang zu bringen sind. Durch die Erkenntnisse der Arbeitsgruppe unter Norbert Sauer, Universit{\"a}t Erlangen, wird die Vermutung untermauert, dass AtSUC4 Saccharose im Symport mit H+ aus der Vakuole in das Cytosol transportiert und somit eine Rolle bei der Remobilisierung der in der Vakuole gespeicherten Saccharose {\"u}bernimmt. 4. Dar{\"u}ber hinaus konnten Studien am nichtselektiven spannungsabh{\"a}ngigen „slow-vacuolar-channel" (SV-Kanal) von Arabidopsis Mesophyllvakuolen durchgef{\"u}hrt werden. Dabei wurde das 14-3-3-Protein GRF6 als regulatorisches Protein identifiziert, welches die SV-Kanalaktivit{\"a}t stark verringert. Die gain-of-function Mutante fou2 mit der Punktmutation D454N im TPC1-Kanalprotein zeigt abweichende Kanaleigenschaften zum WT auf. Das Aktivie-rungspotential des fou2-SV-Kanals liegt bei 30 mV negativeren Membranspan-nungen, was die Offenwahrscheinlichkeit des SV-Kanals unter physiologischen Membranspannungen erh{\"o}ht. Die fou2-Mutation beeinflusst außerdem die luminale Ca2+-Bindestelle des SV-Kanals, wodurch die Affinit{\"a}t bzgl. luminalem Ca2+ geringer ist und die fou2-SV-Kanalaktivit{\"a}t bei hohen luminalen Ca2+-Konzentrationen bestehen bleibt. Die absolute Offenwahrscheinlichkeit des WT-SV-Kanals nimmt mit Ans{\"a}uern des vakuol{\"a}ren Lumens im Gegensatz zum fou2-SV-Kanal stark ab, die Einzelkanalleitf{\"a}higkeit des WT- als auch des fou2-SV-Kanals dagegen zu. Anhand der durchgef{\"u}hrten Messungen konnte eine regulatorische, vakuol{\"a}r gelegene Ca2+-Bindestelle des TPC1-kodierten Kanals lokalisiert und charakterisiert werden, welche sich vermutlich nahe am Spannungssensor befindet und unter physiologischen Membranspannungen einen einw{\"a}rtsgerichteten Kationenstrom erm{\"o}glicht. 5. Ferner wurden SV-Kan{\"a}le von Schließzellen untersucht und deren spezifische Eigenschaften mit Mesophyll-SV-Kan{\"a}len verglichen. In Schließzellen liegt neben einer erh{\"o}hten Transkriptmenge des single-copy Gens TPC1 eine h{\"o}here Stromdichte des SV-Kanals vor. Unter einw{\"a}rtsgerichtetem K+-Gradienten liegt das Aktivierungspotential von Schließzell-SV-Kan{\"a}le um 30 mV negativer als bei Mesophyllvakuolen, was unter physiologischen Membranspannungen zu einem ausgepr{\"a}gtem K+-Einstrom f{\"u}hrt. Dar{\"u}ber hinaus zeigte der Schließzell-SV-Kanal eine h{\"o}here Permeabilit{\"a}t von Na+- gegen{\"u}ber K+-Ionen (1,3:1) auf. W{\"a}hrend Schließzell- und Mesophyll-SV-Kan{\"a}le eine vergleichbare luminale Ca2+-Sensitivit{\"a}t aufweisen, zeigen Schließzell-SV-Kan{\"a}le eine h{\"o}here cytosoli-sche Ca2+- und vakuol{\"a}re pH-Sensitivit{\"a}t auf. Sequenzanalysen der TPC1-cDNA zeigten, dass die Zelltypspezifischen Unterschiede des SV-Kanals nicht durch posttranskriptionale Modifikation hervorgerufen werden.}, subject = {Ackerschmalwand}, language = {de} }