@phdthesis{Nieratschker2008, author = {Nieratschker, Vanessa}, title = {Charakterisierung der Serin-/Threonin-Proteinkinase SRPK3 in Drosophila melanogaster und Phosphorylierungsstudien an Synapsin}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-27806}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {In einer vorangegangenen Arbeit konnte eine hypomorphe Mutation innerhalb des Genlokus einer putativen Serin-/Threonin-Kinase als Ausl{\"o}ser der Aggregatbildung des Aktive-Zone- Proteins Bruchpilot in larvalen Motoneuronaxonen identifiziert werden (Nieratschker, 2004). Aufgrund der Homologien dieser Kinase zu SR-Proteinkinasen wurde der Name Serin- /Threonin-Proteinkinase 3 (SRPK3) vorgeschlagen. Laut urspr{\"u}nglicher Annotation der „Flybase" (http://flybase.bio.indiana.edu) codiert der Genlokus der Srpk3, der auf dem linken Arm des dritten Chromosoms innerhalb der Region 79D4 lokalisiert ist und sich {\"u}ber ca. 10,3 kb erstreckt, f{\"u}r zwei Transkripte (Srpk3-RC und Srpk3-RB). Diese beiden Transkripte haben unterschiedliche Transkriptions- und Translationsstartpunkte und unterscheiden sich in ihrem ersten kodierenden Exon, ab dem vierten Exon sind sie allerdings identisch. Das Srpk3-RCTranskript umfasst ca. 4,2 kb, das Srpk3-RB-Transkript ca. 3,8 kb. Die von diesen Transkripten kodierten Proteine bestehen aus 816 (Srpk3-RC) bzw. 749 (Srpk3-RB) Aminos{\"a}uren. Diese beiden urspr{\"u}nglich annotierten Transkripte konnten durch RT-PCR-Experimente best{\"a}tigt werden. Dabei wurde auch ein zus{\"a}tzliches, alternativ gespleißtes Exon von 159 bp entdeckt, das beiden Transkripten zugeordnet werden kann. Somit codiert der Srpk3-Genlokus f{\"u}r mindestens vier Transkripte, die Transkripte der RC/RF-Transkriptgruppe mit (Srpk3-RF) und ohne (Srpk3-RC) das alternativ gespleißte Exon und die Transkripte der RB/RETranskriptgruppe mit (Srpk3-RE) und ohne (Srpk3-RB) das alternativ gespleißte Exon. Die Existenz eines weiteren Transkriptes Srpk3-RD, die in der aktuellen Version der „Flybase" annotiert ist, konnte durch RT-PCR-Experimente nicht nachgewiesen werden. Zu Beginn dieser Arbeit lag eine hypomorphe Mutante f{\"u}r die SRPK3 schon vor (Srpk3P1; Eberle, 1995). Diese Linie tr{\"a}gt eine P-Elementinsertion innerhalb des ersten Exons der RC/RF-Transkriptgruppe, die das Leseraster dieser Transkriptgruppe zerst{\"o}rt, so dass in dieser Linie nur die RB/RE-Transkriptgruppe gebildet werden kann. Wie bereits erw{\"a}hnt, konnte diese Mutation in vorangegangenen Arbeiten bereits als der Ausl{\"o}ser der Aggregatbildung des Bruchpilot-Proteins in larvalen Motoneuronaxone, sowie einiger Verhaltensdefekte identifiziert werden (Nieratschker, 2004; Bock 2006). Diese Verhaltensdefekte {\"a}hneln stark denen, die durch einen knock-down der Bruchpilot-Expression mittels RNAi ausgel{\"o}st werden (Wagh et al., 2006; Bock, 2006), was auf eine Interaktion beider Proteine schließen l{\"a}sst. Um nun den Beweis f{\"u}hren zu k{\"o}nnen, dass tats{\"a}chlich diese Mutation die beobachteten Ph{\"a}notypen verursacht, wurden Rettungsversuche durchgef{\"u}hrt. Die Srpk3-RF-cDNA war dabei in der Lage die durch die hypomorphe Mutation der SRPK3 verursachten Ph{\"a}notypen vollst{\"a}ndig, oder zumindest teilweise zu retten (vgl. auch Bock, 2006; Bloch, 2007). Damit konnte belegt werden, dass die hypomorphe Mutation der SRPK3 tats{\"a}chlich die in der Mutante Srpk3P1 beobachteten Ph{\"a}notypen verursacht. Um die durch in situ Hybridisierung erhaltenen Daten zur Lokalisation der SRPK3 im larvalen Gehirn (Nieratschker, 2004) best{\"a}tigen, sowie weitere Daten erhalten zu k{\"o}nnen, wurden Isoform-spezifische Antisera gegen die SRPK3 generiert. Diese Antiseren sind in der Lage {\"u}berexprimiertes Protein zu detektieren (Bloch, 2007), allerdings ist es mit diesen Antiseren nicht m{\"o}glich die SRPK3 in wildtypischen Pr{\"a}paraten nachzuweisen. Weitere Daten zur Lokalisation der SRPK3, die durch die Verwendung eines SRPK3-eGFPFusionsproteins erhalten wurden, zeigten, dass eine der ektopisch {\"u}berexprimierten SRPK3- Isoformen mit Bruchpilot an der Aktiven Zone kolokalisiert. Dieses Ergebnis, in Verbindung mit den durch die Mutation der SRPK3 verursachten Bruchpilot-Aggregaten in larvalen Motoneuronaxonen und den Verhaltensdefekten, gibt Hinweise auf eine m{\"o}gliche direkte Interaktion beider Proteine….}, subject = {Drosophila melanogaster}, language = {de} } @phdthesis{Diegelmann2003, author = {Diegelmann, S{\"o}ren}, title = {Molekulare und ph{\"a}notypische Charakterisierung von Drosophila melanogaster Synapsin Mutanten und In-vivo Calcium Imaging}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-8513}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2003}, abstract = {Durch genaue Kartierung der Defizienzen in den Mutanten konnten bislang unbekannte regulatorische Elemente des Synapsin Gens identifiziert werden. Mit dieser Information sollte es m{\"o}glich sein, einen Synapsin-„Rescue" Vektor zu konstruieren, der nach Transformation in die Nullmutante den wildtypischen Ph{\"a}notyp wiederherstellt. Beim Vergleich der im Rahmen des Berkeley Drosophila Genom Projekt ver{\"o}ffentlichten Sequenz des Synapsin Gens mit vor sieben Jahren publizierten Sequenzdaten fielen Diskrepanzen sowohl in der genomischen Sequenz als auch in der cDNA auf. Um zu kl{\"a}ren, ob es sich hier um Artefakte, Polymorphismen oder systematische Modifikationen handelt, wurde der entsprechende Bereich von neun an verschiedenen Orten gefangenen Wildtypen genomisch und auf der cDNA Ebene amplifiziert und sequenziert. In allen F{\"a}llen wurde die genomische Sequenz des Genomprojekts verifiziert, so dass von einem Sequenzierfehler in der fr{\"u}heren Sequenz auszugehen ist. Als Folge ergibt sich eine Exon-Intron Struktur, bei der die Spleiß-Konsensussequenz (GT-AG Regel) im Intron 4 des Synapsins gewahrt bleibt. Dagegen best{\"a}tigten die RT-PCR Sequenzen die fr{\"u}heren cDNA-Daten, so dass ein A zu G Austausch zwischen der genomischen Sequenz und der cDNA des Proteins aufgedeckt wird. Dieser Austausch f{\"u}hrt zu einer Ver{\"a}nderung der in allen bisher bekannten Synapsinen konservierten Zielsequenz der Proteinkinase CaMK I/ IV und PKA, was interessante Fragen zu seiner funktionellen Bedeutung aufwirft. Die Basensubstitution spricht f{\"u}r ein A-zu-I RNA-Editing auf der Ebene der Ribonukleins{\"a}ure. Dieser Vorgang wird durch das Enzym dADAR katalysiert und wurde bereits f{\"u}r verschiedene neuronale Proteine nachgewiesen. Die f{\"u}r die Reaktion ben{\"o}tigte doppelstr{\"a}ngige Sekund{\"a}rstruktur der RNA kann durch die Sequenz der pr{\"a}-mRNA des Synapsins gebildet werden. Die potentielle „Editing site Complementary Sequence" (ECS) konnte im Intron 4 in einem Abstand von ca. 90 Basen stromabw{\"a}rts der Editing-Stelle durch ein Computerprogramm ermittelt werden. Der A zu G Austausch wird in allen Laborwildtypen und allen neu etablierten St{\"a}mmen, sowie in verschiedenen Entwicklungsstadien beobachtet. Lediglich in einem cDNA-Gemisch aus Eiern, Embryonen und 1. Larven findet man neben der editierten auch die nicht-editierte Sequenz. Um in sp{\"a}teren Experimenten die Funktion der Phosphorylierung und die Auswirkung der mRNA Editierung ermitteln zu k{\"o}nnen wurden in einem weiteren Versuch die beiden Erkennungsstellen der PKA in der cDNA durch Mutationen modifiziert, so dass Phosphorylierungstests an den Konstrukten durchgef{\"u}hrt werden k{\"o}nnen. Zur ph{\"a}notypischen Charakterisierung der Nullmutante wurde die Defizienz-Linie Syn97 durch extensive R{\"u}ckkreuzung in den genetischen Hintergrund des Wildtyps CantonS eingebracht, der als Standard-Kontrollstamm f{\"u}r Verhaltensexperimente und insbesondere Lernversuche dient. Die Linie Syn97CS wurde im Rahmen einer Kooperation von Mitarbeitern des Lehrstuhls in verschiedenen Verhaltenstests und Lernparadigmen auf ph{\"a}notypische Ver{\"a}nderungen {\"u}berpr{\"u}ft. Dabei fanden sich mehrere Verhaltensunterschiede zum Wildtyp, die vermutlich auf geringf{\"u}gigen Modifikationen in komplexen neuronalen Netzwerken beruhen. In operanten Lernparadigmen konnte ein Einfluss der Synapsin-Elimination auf den Lernerfolg detektiert werden. Dabei trat die Reduktion des Lernindex bereits im dritten Larvenstadien auf und setzte sich in der adulten Fliege fort. Der Einfluss des Fehlens des Synapsins auf Lernprozesse in Drosophila steht im Einklang mit Befunden aus Knock-out M{\"a}usen f{\"u}r SynI + II. Im reduzierten Courtship Index der Syn97CS M{\"a}nnchen offenbart sich ein konkreter Hinweis auf eine verringerte Darwin'sche Fitness der Synapsin-Nullmutante. Die Gesamtheit der in der Synapsin-Nullmutante entdeckten Ph{\"a}notypen k{\"o}nnte den hohen Konservierungsgrad des Proteins zwischen Vertebraten und Invertebraten erkl{\"a}ren. In einem weiteren Teil-Projekt konnten Mutationen in die cDNA des Calciumsensor Cameleon 2.0 Proteins eingebracht werden, um so die verbesserte Version Cam 2.1 zu erhalten. Daraufhin wurden mehrere transgene UAS-Cam 2.1 Linien hergestellt, die bei der Kreuzung mit verf{\"u}gbaren Gal4 Linien den Calciumsensor f{\"u}r eine Expression in definierten Neuronenpopulationen von Drosophila zug{\"a}nglich machen. In weiterf{\"u}hrenden Arbeiten konnte die Funktionalit{\"a}t des Fusionsproteins {\"u}berpr{\"u}ft werden und somit die ersten Schritte hin zur Anwendung der in-vivo Calcium Imaging Methode am Lehrstuhl durchgef{\"u}hrt werden.}, language = {de} }