@article{AdamKircherSbieraetal.2021, author = {Adam, Pia and Kircher, Stefan and Sbiera, Iuliu and Koehler, Viktoria Florentine and Berg, Elke and Kn{\"o}sel, Thomas and Sandner, Benjamin and Fenske, Wiebke Kristin and Bl{\"a}ker, Hendrik and Smaxwil, Constantin and Zielke, Andreas and Sipos, Bence and Allelein, Stephanie and Schott, Matthias and Dierks, Christine and Spitzweg, Christine and Fassnacht, Martin and Kroiss, Matthias}, title = {FGF-Receptors and PD-L1 in Anaplastic and Poorly Differentiated Thyroid Cancer: Evaluation of the Preclinical Rationale}, series = {Frontiers in Endocrinology}, volume = {12}, journal = {Frontiers in Endocrinology}, issn = {1664-2392}, doi = {10.3389/fendo.2021.712107}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-244653}, year = {2021}, abstract = {Background Treatment options for poorly differentiated (PDTC) and anaplastic (ATC) thyroid carcinoma are unsatisfactory and prognosis is generally poor. Lenvatinib (LEN), a multi-tyrosine kinase inhibitor targeting fibroblast growth factor receptors (FGFR) 1-4 is approved for advanced radioiodine refractory thyroid carcinoma, but response to single agent is poor in ATC. Recent reports of combining LEN with PD-1 inhibitor pembrolizumab (PEM) are promising. Materials and Methods Primary ATC (n=93) and PDTC (n=47) tissue samples diagnosed 1997-2019 at five German tertiary care centers were assessed for PD-L1 expression by immunohistochemistry using Tumor Proportion Score (TPS). FGFR 1-4 mRNA was quantified in 31 ATC and 14 PDTC with RNAscope in-situ hybridization. Normal thyroid tissue (NT) and papillary thyroid carcinoma (PTC) served as controls. Disease specific survival (DSS) was the primary outcome variable. Results PD-L1 TPS≥50\% was observed in 42\% of ATC and 26\% of PDTC specimens. Mean PD-L1 expression was significantly higher in ATC (TPS 30\%) than in PDTC (5\%; p<0.01) and NT (0\%, p<0.001). 53\% of PDTC samples had PD-L1 expression ≤5\%. FGFR mRNA expression was generally low in all samples but combined FGFR1-4 expression was significantly higher in PDTC and ATC compared to NT (each p<0.001). No impact of PD-L1 and FGFR 1-4 expression was observed on DSS. Conclusion High tumoral expression of PD-L1 in a large proportion of ATCs and a subgroup of PDTCs provides a rationale for immune checkpoint inhibition. FGFR expression is low thyroid tumor cells. The clinically observed synergism of PEM with LEN may be caused by immune modulation.}, language = {en} } @article{WeigandRonchiRizkRabinetal.2017, author = {Weigand, Isabel and Ronchi, Cristina L. and Rizk-Rabin, Marthe and Dalmazi, Guido Di and Wild, Vanessa and Bathon, Kerstin and Rubin, Beatrice and Calebiro, Davide and Beuschlein, Felix and Bertherat, J{\´e}r{\^o}me and Fassnacht, Martin and Sbiera, Silviu}, title = {Differential expression of the protein kinase A subunits in normal adrenal glands and adrenocortical adenomas}, series = {Scientific Reports}, volume = {7}, journal = {Scientific Reports}, number = {49}, doi = {10.1038/s41598-017-00125-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-157952}, year = {2017}, abstract = {Somatic mutations in protein kinase A catalytic α subunit (PRKACA) were found to be causative for 30-40\% of cortisol-producing adenomas (CPA) of the adrenal gland, rendering PKA signalling constitutively active. In its resting state, PKA is a stable and inactive heterotetramer, consisting of two catalytic and two regulatory subunits with the latter inhibiting PKA activity. The human genome encodes three different PKA catalytic subunits and four different regulatory subunits that are preferentially expressed in different organs. In normal adrenal glands all regulatory subunits are expressed, while CPA exhibit reduced protein levels of the regulatory subunit IIβ. In this study, we linked for the first time the loss of RIIβ protein levels to the PRKACA mutation status and found the down-regulation of RIIβ to arise post-transcriptionally. We further found the PKA subunit expression pattern of different tumours is also present in the zones of the normal adrenal cortex and demonstrate that the different PKA subunits have a differential expression pattern in each zone of the normal adrenal gland, indicating potential specific roles of these subunits in the regulation of different hormones secretion.}, language = {en} }