@phdthesis{Nemec2023, author = {Nemec, Katarina}, title = {Modulation of parathyroid hormone 1 receptor (PTH1R) signaling by receptor activity-modifying proteins (RAMPs)}, doi = {10.25972/OPUS-28858}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-288588}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {The receptor activity-modifying proteins (RAMPs) are ubiquitously expressed membrane proteins that interact with several G protein-coupled receptors (GPCRs), the largest and pharmacologically most important family of cell surface receptors. RAMPs can regulate GPCR function in terms of ligand-binding, G-protein coupling, downstream signaling, trafficking, and recycling. The integrity of their interactions translates to many physiological functions or pathological conditions. Regardless of numerous reports on its essential importance for cell biology and pivotal role in (patho-)physiology, the molecular mechanism of how RAMPs modulate GPCR activation remained largely elusive. This work presents new insights that add to the common understanding of the allosteric regulation of receptor activation and will help interpret how accessory proteins - RAMPs - modulate activation dynamics and how this affects the fundamental aspects of cellular signaling. Using a prototypical class B GPCR, the parathyroid hormone 1 receptor (PTH1R) in the form of advanced genetically encoded optical biosensors, I examined RAMP's impact on the PTH1R activation and signaling in intact cells. A panel of single-cell FRET and confocal microscopy experiments as well canonical and non-canonical functional assays were performed to get a holistic picture of the signaling initiation and transduction of that clinically and therapeutically relevant GPCR. Finally, structural modeling was performed to add molecular mechanistic details to that novel art of modulation. I describe here that RAMP2 acts as a specific allosteric modulator of PTH1R, shifting PTH1R to a unique pre-activated state that permits faster activation in a ligand-specific manner. Moreover, RAMP2 modulates PTH1R downstream signaling in an agonist-dependent manner, most notably increasing the PTH-mediated Gi3 signaling sensitivity and kinetics of cAMP accumulation. Additionally, RAMP2 increases PTH- and PTHrP-triggered β-arrestin2 recruitment to PTH1R and modulates cytosolic ERK1/2 phosphorylation. Structural homology modeling shows that structural motifs governing GPCR-RAMP interaction originate in allosteric hotspots and rationalize functional modulation. Moreover, to interpret the broader role of RAMP's modulation in GPCRs pharmacology, different fluorescent tools to investigate RAMP's spatial organization were developed, and novel conformational biosensors for class B GPCRs were engineered. Lastly, a high throughput assay is proposed and prototyped to expand the repertoire of RAMPs or other membrane protein interactors. These data uncover the critical role of RAMPs in GPCR activation and signaling and set up a novel platform for studying GPCR modulation. Furthermore, these insights may provide a new venue for precise modulation of GPCR function and advanced drug design.}, subject = {G-Protein gekoppelter Rezeptor}, language = {en} } @phdthesis{Anton2021, author = {Anton, Selma}, title = {Characterization of cAMP nanodomains surrounding the human Glucagon-like peptide 1 receptor using FRET-based reporters}, doi = {10.25972/OPUS-19069}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-190695}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Cyclic adenosine monophosphate (cAMP), the ubiquitous second messenger produced upon stimulation of GPCRs which couple to the stimulatory GS protein, orchestrates an array of physiological processes including cardiac function, neuronal plasticity, immune responses, cellular proliferation and apoptosis. By interacting with various effector proteins, among others protein kinase A (PKA) and exchange proteins directly activated by cAMP (Epac), it triggers signaling cascades for the cellular response. Although the functional outcomes of GSPCR-activation are very diverse depending on the extracellular stimulus, they are all mediated exclusively by this single second messenger. Thus, the question arises how specificity in such responses may be attained. A hypothesis to explain signaling specificity is that cellular signaling architecture, and thus precise operation of cAMP in space and time would appear to be essential to achieve signaling specificity. Compartments with elevated cAMP levels would allow specific signal relay from receptors to effectors within a micro- or nanometer range, setting the molecular basis for signaling specificity. Although the paradigm of signaling compartmentation gains continuous recognition and is thoroughly being investigated, the molecular composition of such compartments and how they are maintained remains to be elucidated. In addition, such compartments would require very restricted diffusion of cAMP, but all direct measurements have indicated that it can diffuse in cells almost freely. In this work, we present the identification and characterize of a cAMP signaling compartment at a GSPCR. We created a F{\"o}rster resonance energy transfer (FRET)-based receptor-sensor conjugate, allowing us to study cAMP dynamics in direct vicinity of the human glucagone-like peptide 1 receptor (hGLP1R). Additional targeting of analogous sensors to the plasma membrane and the cytosol enables assessment of cAMP dynamics in different subcellular regions. We compare both basal and stimulated cAMP levels and study cAMP crosstalk of different receptors. With the design of novel receptor nanorulers up to 60nm in length, which allow mapping cAMP levels in nanometer distance from the hGLP1R, we identify a cAMP nanodomain surrounding it. Further, we show that phosphodiesterases (PDEs), the only enzymes known to degrade cAMP, are decisive in constraining cAMP diffusion into the cytosol thereby maintaining a cAMP gradient. Following the discovery of this nanodomain, we sought to investigate whether downstream effectors such as PKA are present and active within the domain, additionally studying the role of A-kinase anchoring proteins (AKAPs) in targeting PKA to the receptor compartment. We demonstrate that GLP1-produced cAMP signals translate into local nanodomain-restricted PKA phosphorylation and determine that AKAP-tethering is essential for nanodomain PKA. Taken together, our results provide evidence for the existence of a dynamic, receptor associated cAMP nanodomain and give prospect for which key proteins are likely to be involved in its formation. These conditions would allow cAMP to exert its function in a spatially and temporally restricted manner, setting the basis for a cell to achieve signaling specificity. Understanding the molecular mechanism of cAMP signaling would allow modulation and thus regulation of GPCR signaling, taking advantage of it for pharmacological treatment.}, language = {en} } @phdthesis{Berisha2019, author = {Berisha, Filip}, title = {Molekulare Wirkmechanismen von Sulfonylharnstoffen: Direkte Epac-Aktivierung oder Hemmung der Phosphodiesterasen}, doi = {10.25972/OPUS-17653}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-176535}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Diabetes mellitus ist die h{\"a}ufigste Stoffwechselerkrankung in Deutschland. Sulfonylharnstoffe (SH) stellen die {\"a}lteste und eine sehr prominente Gruppe in der oralen Therapie des Diabetes mellitus Typ II dar, die eine verst{\"a}rkte Insulinfreisetzung vorrangig durch die Hemmung eines ATP-sensitiven Kaliumkanals (K+ATPKanal) erreichen. Daneben konnten weitere Proteine identifiziert werden, die mit SH interagieren und zu deren Effekten beitragen. W{\"a}hrend bereits in fr{\"u}hen Arbeiten gezeigt werden konnte, dass SH Vertreter der Phosphodiesterasen (PDE)Familie in ihrer Funktion behindern k{\"o}nnen, wurde k{\"u}rzlich Epac2 (exchange protein directly activated by cAMP 2) als weiteres Zielprotein f{\"u}r SH angef{\"u}hrt. Insbesondere die F{\"a}higkeit von SH, direkt an Epac2 zu binden, wird in der Literatur kontrovers diskutiert und eine indirekte Aktivierung durch eine PDE-Hemmung und einen erh{\"o}hten cAMP-Spiegel als Mechanismus vermutet. Zur weiteren Untersuchung wurden in dieser Arbeit FRET-basierte Biosensoren verwendet, um die Wirkung von SH auf Epac und PDEs n{\"a}her zu untersuchen. Dabei konnte sowohl in einem photometrischen Ansatz als auch in lebenden Zellen, die einen Epac2-basierten Sensor enthalten, gezeigt werden, dass eine Aktivierung durch SH stattfindet. Da sowohl Epac2-camps, der von allen hier verwendeten Sensoren mit der h{\"o}chsten Sensitivit{\"a}t f{\"u}r cAMP, als auch CFP-Epac1δDEPYFP nicht auf SH reagieren, ist diese Aktivierung selektiv f{\"u}r die Isoform Epac2 und wird vorrangig nicht durch eine PDE-Hemmung verursacht. Die Verwendung weiterer Sensoren mit verschiedenen Varianten von Epac2 (verl{\"a}ngerte Version von Epac2-camps) zeigen mit zunehmender L{\"a}nge {\"u}ber die cAMP-Bindedom{\"a}ne hinaus eine beginnende Reaktion im Sinne einer instabilen FRET-Kurve (Epac2camps long) bzw. eine deutliche Aktivierung durch den SH (Epac2-camps superlong), wodurch eine direkte Aktivierung best{\"a}tigt wird, und suggerieren eine Bindestelle f{\"u}r SH, die sich von denen von cAMP unterschiedet und weiter eingeengt werden konnte (im n{\"a}heren Bereich von Q454 bzw. E460). Obwohl hierdurch eine direkte Aktivierung gezeigt werden konnte, ist die grunds{\"a}tzliche F{\"a}higkeit der SH, PDE zu beeinflussen, keineswegs gekl{\"a}rt. Daher wurden weitere Sensoren konstruiert bzw. verwendet, die basierend auf Epac1-camps und Epac2-camps verschiedene PDEs enthalten. Dabei konnte durch die Zugabe von SH eine deutliche Aktivierung des jeweiligen Sensors und somit eine PDEHemmung nachgewiesen werden. Dies konnte sowohl f{\"u}r PDE4A als auch f{\"u}r die in Inselzellen {\"u}berwiegend vorkommende PDE3B gezeigt werden. Dadurch ergeben sich einige (klinisch relevante) Implikationen. Zum einen stellt neben der direkten Epac-Aktivierung auch die direkte Hemmung der PDE einen wichtigen Mechanismus f{\"u}r die Sekretion von Insulin dar. Außerdem sind bei PDEHemmung und direkter Epac-Aktivierung außerhalb der Inselzellen auch Nebenwirkungen in anderen Organen zu erwarten wie z.B. die Entstehung lebensgef{\"a}hrlicher Rhythmusst{\"o}rungen in Herzmuskelzellen.}, subject = {Sulfonylharnstoffe}, language = {de} } @article{MaiellaroLohseKitteetal.2016, author = {Maiellaro, Isabella and Lohse, Martin J. and Kitte, Robert J. and Calebiro, Davide}, title = {cAMP Signals in Drosophila Motor Neurons Are Confined to Single Synaptic Boutons}, series = {Cell Reports}, volume = {17}, journal = {Cell Reports}, number = {5}, doi = {10.1016/j.celrep.2016.09.090}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-162324}, pages = {1238-1246}, year = {2016}, abstract = {The second messenger cyclic AMP (cAMP) plays an important role in synaptic plasticity. Although there is evidence for local control of synaptic transmission and plasticity, it is less clear whether a similar spatial confinement of cAMP signaling exists. Here, we suggest a possible biophysical basis for the site-specific regulation of synaptic plasticity by cAMP, a highly diffusible small molecule that transforms the physiology of synapses in a local and specific manner. By exploiting the octopaminergic system of Drosophila, which mediates structural synaptic plasticity via a cAMP-dependent pathway, we demonstrate the existence of local cAMP signaling compartments of micrometer dimensions within single motor neurons. In addition, we provide evidence that heterogeneous octopamine receptor localization, coupled with local differences in phosphodiesterase activity, underlies the observed differences in cAMP signaling in the axon, cell body, and boutons.}, language = {en} } @phdthesis{Pollinger2012, author = {Pollinger, Thomas}, title = {Spatiotemporale Organisation der Interaktion von Gq Protein-Untereinheiten und der Phospholipase Cβ3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-71884}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Die G-Protein vermittelte Aktivierung der Phospholipase Cβ (PLCβ) stellt einen prim{\"a}ren Mechanismus dar, um eine Vielzahl von physiologischen Ereignissen zu regulieren, z.B. die Kontraktion glatter Muskelzellen, Sekretion oder die Modulation der synaptischen Transmission. Sowohl Gαq- als auch Gβγ-Untereinheiten sind daf{\"u}r bekannt mit PLCβ Enzymen zu interagieren und diese zu aktivieren. {\"U}ber die Dynamik dieser Interaktion und den relative Beitrag der G-Protein Untereinheiten ist jedoch nur wenig bekannt. Unter Verwendung Fluoreszenz Resonanz Energie Transfer (FRET)- basierter Methoden in lebenden Zellen, wurde die Kinetik der Rezeptor-induzierten Interaktion zwischen Gβγ und Gαq Untereinheiten, die Interaktion von sowohl der Gαq als auch der Gβγ-Untereinheit mit der PLCβ3 und die Interaktion des regulator of G-Protein signaling 2 (RGS2) mit Gαq-Untereinheiten untersucht. Um die Untersuchung der Protein-Protein-Interaktion auf die Zellmembran zu beschr{\"a}nken, wurde die Total-Internal Reflection Fluorescence (TIRF) Mikroskopie angewandt. Zeitlich hoch aufl{\"o}sendes, ratiometrisches FRET-Imaging offenbarte eine deutlich schnellere Dissoziation von Gαq und PLCβ3 nach Entzug purinerger Agonisten verglichen mit der Deaktivierung von Gq Proteinen in der Abwesenheit der PLCβ3. Dieser offensichtliche Unterschied in der Kinetik kann durch die GTPase-aktivierende Eigenschaft der PLCβ3 in lebenden Zellen erkl{\"a}rt werden. Weiterhin zeigte es sich, dass PLCβ3 die Gq Protein Kinetik in einem {\"a}hnlich Ausmaß beeinflusst wie RGS2, welches in vitro deutlich effizienter darin ist, die intrinsische GTPase Aktivit{\"a}t der Gαq-Untereinheit zu beschleunigen. Als Antwort auf die Rezeptorstimulation wurde sowohl eine Interaktion von Gαq-Untereinheiten als auch von Gq-abstammende Gβγ-Untereinheiten mit der PLCβ3 beobachtet. Dar{\"u}ber hinaus zeigte sich auch eine Agonist-abh{\"a}ngige Interaktion von Gαq und RGS2. In Abwesenheit einer Rezeptorstimulation konnte kein spezifisches FRET-Signal zwischen Gq Proteinen und der PLCβ3 oder RGS2 detektiert werden. Zusammengefasst erm{\"o}glichte das ratiometrische FRET-Imaging in der TIRF Mikroskopie neue Einsichten in die Dynamik und Interaktionsmuster des Gq-Signalwegs.}, subject = {TIRF}, language = {de} } @phdthesis{vonHayn2010, author = {von Hayn, Kathrin}, title = {Untersuchungen zur Ca2+-abh{\"a}ngigen Regulation von cAMP in intakten vaskul{\"a}ren Myocyten}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-47709}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Die Regulation des Tonus glatter Muskelzellen wird entscheidend von den beiden antagonistisch wirkenden second messengern cAMP und Ca2+ beeinflusst. Ein Ziel dieser Arbeit war herauszufinden, ob diese beiden Botenstoffe auch direkten Einfluss aufeinander haben k{\"o}nnen und welche Enzyme in diesem Fall an den Prozessen beteiligt sind. cAMP-Signale in intakten Zellen konnten wir in Echtzeit mit Hilfe des FRET-basierten cAMP-Sensors Epac1-camps beobachten; Ca2+-Signale durch Markieren der Zellen mit Fura-2. Anstiege der intrazellul{\"a}ren Ca2+-Konzentration in VSMCs wurden durch Aktivierung von endogen exprimierten, Gq-gekoppelten P2Y6-Rezeptoren mit Uridindiphosphat (UDP) ausgel{\"o}st. Durch eine zus{\"a}tzliche in-vitro Kalibrierung des Epac1-camps konnten dar{\"u}ber hinaus absolute cAMP-Konzentrationen in einzelnen lebenden Zellen berechnet werden. W{\"a}hrend ein Anstieg der Ca2+-Konzentration auf nicht vorstimulierte VSMCs keinen signifikante Einfluss auf die intrazellul{\"a}ren cAMP-Konzentrationen hatte, bewirkte die Aktivierung der purinergen Rezeptoren einen deutlichen R{\"u}ckgang der intrazellul{\"a}ren cAMP-Konzentration in mit Isoproterenol vorstimulierten VSMCs. Dieser Effekt konnte sowohl durch die Komplexierung von Ca2+ mit BAPTA-AM als auch durch die {\"U}berexpression der Ca2+-insensitiven AC4 antagonisiert werden. Adenylatcyclase-Aktivit{\"a}ts-Assays in VSMC-Membranen zeigten ebenfalls einen R{\"u}ckgang der Cyclaseaktivit{\"a}t nach Zugabe von 2 und 5 \&\#956;M freiem Ca2+. Die Hemmung der einzigen Ca2+-regulierbaren PDE1 mit dem selektiven PDE1-Inhibitor 8-Methoxymethyl-IBMX (8-MM-IBMX) hatte im Gegensatz dazu keinen Einfluss auf die durch UDP verursachte {\"A}nderung der cAMP-Konzentration in vorstimulierten VSMCs. Schließlich bewirkte die Herunterregulation der Ca2+-inhibierbaren AC5 und 6 mit siRNA einen signifikante Hemmung des durch UDP verursachten Effekts. Fasst man alle diese Ergebnisse zusammen, so l{\"a}sst sich folgende Schlussfolgerung ziehen: Der durch purinerge Stimulation verursachte R{\"u}ckgang der cAMP-Konzentration in mit Isoproterenol vorstimulierten VSMCs wird durch eine Hemmung der Ca2+-hemmbaren AC5 und 6 vermittelt. Dadurch sind zwei f{\"u}r die Regulation des Tonus wichtige Signalwege in VSMCs miteinander verbunden, die sich somit gegenseitig entscheidend beeinflussen k{\"o}nnen. Ein weiterer Bestandteil dieser Arbeit war die Entwicklung eines transgenen Mausmodells, das glattmuskelspezifisch den cAMP-Sensor Epac1-camps exprimiert. Mit Hilfe eines solchen Tiermodells k{\"o}nnten in Zukunft cAMP-{\"A}nderungen in intakten Geweben und vielleicht sogar in lebenden Tieren beobachtet werden. Durch Anwendung des Cre-loxP-Rekombinationssystems gelang es eine glatt¬muskelspezifische, f{\"u}r den Epac1-camps transgene Mauslinie zu generieren. Mit isolierten VSMCs dieser Tiere konnten bereits erste FRET-Messungen durchgef{\"u}hrt und agonistinduzierte cAMP-{\"A}nderungen beobachtet werden.}, subject = {Glatte Muskulatur}, language = {de} } @phdthesis{Nikolaev2005, author = {Nikolaev, Viacheslav}, title = {Development and application of fluorescent cAMP und cGMP biosensors}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-15673}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {The cyclic nucleotides cAMP and cGMP are two ubiquitous important second messengers, which regulate diverse physiological responses from vision and memory to blood pressure and thrombus formation. They act in cells via cAMP- and cGMP-dependent protein kinases (PKA and GK), cyclic nucleotide-gated channels and Epac. Although the concept of cyclic nucleotide signalling is well developed based on classical biochemical studies, these techniques have not allowed to analyze cAMP and cGMP in live cells with high temporal and spatial resolution. In the present study fluorescence resonance energy transfer was used to develop a technique for visualization of cAMP and cGMP in live cells and in vitro by means of fluorescent biosensors. Ligand-induced conformational change in a single nucleotide-binding domain flanked with green fluorescent protein mutants was used for dynamic, highly sensitive measurements of cAMP and cGMP. Such biosensors retained binding properties and chemical specificity of unmodified domains, allowing to image cyclic nucleotides in a physiologically relevant range of concentrations. To develop cAMP-sensors, binding domains of PKA, Epac and cAMP-gated HCN-channel were used. cGMP-sensors were based on single domains of GK and phosphodiesterases (PDEs). Sensors based on Epac were used to analyze spatio-temporal dynamics of cAMP in neurons and macrophages, demonstrating that cAMP-gradients travel with a high speed (~ 40 \&\#956;m/s) throughout the entire cytosol. To understand the mechanisms of cAMP-compartmentation, kinetics properties of phosphodi-esterase (PDE2) were, next, analyzed in aldosterone producing cells. PDE2 is able to rapidly hydrolyze extensive amounts of cAMP, so that the speed of cAMP-hydrolysis is much faster than that of its synthesis, which might serve as a basis of compartmentation. cAMP-sensors were also used to develop a clinically relevant diagnostic method for reliable detection of \&\#946;1-adrenergic receptor autoantibodies in cardiac myopathy patients, which has allowed to significantly increase the sensitivity of previously developed diagnostic approaches. Conformational change in a single binding domain of GK and PDE was, next, used to create novel fluorescent biosensors for cGMP. These sensors demonstrated high spatio-temporal resolution and were applied to analyze rapid dynamics of cGMP production by soluble and particulate guanylyl cyclases as well as to image cGMP in mesangial cells. In summary, highly sensitive biosensors for cAMP and cGMP based on single cyclic nucleotide-binding domains have been developed and used in various biological and clinically relevant applications.}, subject = {Cyclo-AMP}, language = {en} }