@article{MaurerHartmannArgyriouetal.2022, author = {Maurer, Wiebke and Hartmann, Nico and Argyriou, Loukas and Sossalla, Samuel and Streckfuss-B{\"o}meke, Katrin}, title = {Generation of homozygous Na\(_{v}\)1.8 knock-out iPSC lines by CRISPR Cas9 genome editing to investigate a potential new antiarrhythmic strategy}, series = {Stem Cell Research}, volume = {60}, journal = {Stem Cell Research}, doi = {10.1016/j.scr.2022.102677}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300936}, year = {2022}, abstract = {The sodium channel Na\(_{v}\)1.8, encoded by SCN10A, is reported to contribute to arrhythmogenesis by inducing the late I\(_{Na}\) and thereby enhanced persistent Na\(^{+}\) current. However, its exact electrophysiological role in cardiomyocytes remains unclear. Here, we generated induced pluripotent stem cells (iPSCs) with a homozygous SCN10A knock-out from a healthy iPSC line by CRISPR Cas9 genome editing. The edited iPSCs maintained full pluripotency, genomic integrity, and spontaneous in vitro differentiation capacity. The iPSCs are able to differentiate into iPSC-cardiomyocytes, hence making it possible to investigate the role of Na\(_{v}\)1.8 in the heart.}, language = {en} }