@phdthesis{Misra2020, author = {Misra, Mohit}, title = {Knowing then defeating: The Ubiquitin activating enzyme, a promising target for cancer therapy}, doi = {10.25972/OPUS-16722}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167227}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Ubiquitin is a 76 amino acid long polypeptide, which is present throughout eukaryotes in a highly conserved fashion. Ubiquitin can modify proteins by becoming covalently attached to them. Eukaryotic cells employ ubiquitin to maintain and regulate fundamental cellular processes like protein degradation, the immune response and transcriptional and translational regulation. Transfer of ubiquitin to the substrate is achieved by the catalysis of three classes of enzymes namely E1, E2 and E3. Together these enzymes form a pyramidal hierarchy, where E1 stands at the apex and E3 enzymes form the base of the pathway. The ubiquitin activating enzyme 1 (UBA1) plays a major role in ubiquitylation being the ubiquitin-dedicated E1 enzyme. In addition, it is the only enzyme in this pathway to use ATP as an energy source to catalyze two important reactions. The products of these reactions, ubiquitin adenylate and ubiquitin thioester, are the essential intermediate states of ubiquitin, for being conjugated to the target protein. With the help of X-ray crystallography and biochemical approaches, snapshots of multiple catalytic states of UBA1, where it is bound to Mg-ATP, ubiquitin and the E2 Ubc13 as substrates could be captured. With the help of these high-resolution crystal structures, deeper insights into the enzymatic mechanism of UBA1 could be attained. The resulting insights into the catalytic cycle were further validated by biochemical assays. It could be shown that ATP acts as a molecular switch to induce the enzyme's open conformation. Ubiquitin-binding to the enzyme leads to domain rotations, which facilitate the recruitment of a cognate E2 enzyme. The interdomain communication as well as the cross-talk with the substrates and the products fuel the enzymatic cycle of UBA1. Due to the proven efficacy of proteasome inhibitors for cancer treatment, which block degradation of proteins labeled with ubiquitin, enzymes participating in the ubiquitylation cascade have been targeted by researchers for the development of novel anti-cancer therapeutics. UBA1 inhibition has been shown to preferentially induce cell death in malignant cells, and it can also be used as a strategy to overcome resistance against proteasome inhibitors. MLN7243, an adenosyl sulfamate inhibitor developed by Millenium Pharmaceutical to specifically target UBA1, is currently in Phase-I clinical trials for the treatment of solid tumors. UBA1 could be crystallized in complex with three adenosyl sulfamate inhibitors covalently linked to ubiquitin, which are promising drug candidates for cancer therapy. The inhibitors employed, MLN7243, MLN4924 and ABPA3, show distinct specificities towards different E1 enzymes. With the help of crystal structures the specificity determinants of these inhibitors could be deciphered, which were further confirmed by inhibition assays as well as molecular dynamics simulations. Together these crystal structures provide a starting point for developing E1-specific inhibitors, which, besides their potential for medicinal purposes, are important tools to better understand the function of the ubiquitin system as well as the action of ubiquitin-like proteins.}, subject = {Ubiquitin-aktivierende Enzym 1}, language = {en} }