@phdthesis{Reinhard2023, author = {Reinhard, Sebastian}, title = {Improving Super-Resolution Microscopy Data Reconstruction and Evaluation by Developing Advanced Processing Algorithms and Artifcial Neuronal Networks}, doi = {10.25972/OPUS-31695}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-316959}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {The fusion of methods from several disciplines is a crucial component of scientific development. Artificial Neural Networks, based on the principle of biological neuronal networks, demonstrate how nature provides the best templates for technological advancement. These innovations can then be employed to solve the remaining mysteries of biology, including, in particular, processes that take place on microscopic scales and can only be studied with sophisticated techniques. For instance, direct Stochastic Optical Reconstruction Microscopy combines tools from chemistry, physics, and computer science to visualize biological processes at the molecular level. One of the key components is the computer-aided reconstruction of super-resolved images. Improving the corresponding algorithms increases the quality of the generated data, providing further insights into our biology. It is important, however, to ensure that the heavily processed images are still a reflection of reality and do not originate in random artefacts. Expansion microscopy is expanding the sample by embedding it in a swellable hydrogel. The method can be combined with other super-resolution techniques to gain additional resolution. We tested this approach on microtubules, a well-known filamentous reference structure, to evaluate the performance of different protocols and labelling techniques. We developed LineProfiler an objective tool for data collection. Instead of collecting perpendicular profiles in small areas, the software gathers line profiles from filamentous structures of the entire image. This improves data quantity, quality and prevents a biased choice of the evaluated regions. On the basis of the collected data, we deployed theoretical models of the expected intensity distribution across the filaments. This led to the conclusion that post-expansion labelling significantly reduces the labelling error and thus, improves the data quality. The software was further used to determine the expansion factor and arrangement of synaptonemal complex data. Automated Simple Elastix uses state-of-the-art image alignment to compare pre- and post-expansion images. It corrects linear distortions occurring under isotropic expansion, calculates a structural expansion factor and highlights structural mismatches in a distortion map. We used the software to evaluate expanded fungi and NK cells. We found that the expansion factor differs for the two structures and is lower than the overall expansion of the hydrogel. Assessing the fluorescence lifetime of emitters used for direct Stochastic Optical Reconstruction Microscopy can reveal additional information about the molecular environment or distinguish dyes emitting with a similar wavelength. The corresponding measurements require a confocal scanning of the sample in combination with the fluorescent switching of the underlying emitters. This leads to non-linear, interrupted Point Spread Functions. The software ReCSAI targets this problem by combining the classical algorithm of compressed sensing with modern methods of artificial intelligence. We evaluated several different approaches to combine these components and found, that unrolling compressed sensing into the network architecture yields the best performance in terms of reconstruction speed and accuracy. In addition to a deep insight into the functioning and learning of artificial intelligence in combination with classical algorithms, we were able to reconstruct the described non-linearities with significantly improved resolution, in comparison to other state-of-the-art architectures.}, subject = {Mikroskopie}, language = {en} } @phdthesis{Bleier2023, author = {Bleier, Michael}, title = {Underwater Laser Scanning - Refractive Calibration, Self-calibration and Mapping for 3D Reconstruction}, isbn = {978-3-945459-45-4}, doi = {10.25972/OPUS-32269}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322693}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {There is great interest in affordable, precise and reliable metrology underwater: Archaeologists want to document artifacts in situ with high detail. In marine research, biologists require the tools to monitor coral growth and geologists need recordings to model sediment transport. Furthermore, for offshore construction projects, maintenance and inspection millimeter-accurate measurements of defects and offshore structures are essential. While the process of digitizing individual objects and complete sites on land is well understood and standard methods, such as Structure from Motion or terrestrial laser scanning, are regularly applied, precise underwater surveying with high resolution is still a complex and difficult task. Applying optical scanning techniques in water is challenging due to reduced visibility caused by turbidity and light absorption. However, optical underwater scanners provide significant advantages in terms of achievable resolution and accuracy compared to acoustic systems. This thesis proposes an underwater laser scanning system and the algorithms for creating dense and accurate 3D scans in water. It is based on laser triangulation and the main optical components are an underwater camera and a cross-line laser projector. The prototype is configured with a motorized yaw axis for capturing scans from a tripod. Alternatively, it is mounted to a moving platform for mobile mapping. The main focus lies on the refractive calibration of the underwater camera and laser projector, the image processing and 3D reconstruction. For highest accuracy, the refraction at the individual media interfaces must be taken into account. This is addressed by an optimization-based calibration framework using a physical-geometric camera model derived from an analytical formulation of a ray-tracing projection model. In addition to scanning underwater structures, this work presents the 3D acquisition of semi-submerged structures and the correction of refraction effects. As in-situ calibration in water is complex and time-consuming, the challenge of transferring an in-air scanner calibration to water without re-calibration is investigated, as well as self-calibration techniques for structured light. The system was successfully deployed in various configurations for both static scanning and mobile mapping. An evaluation of the calibration and 3D reconstruction using reference objects and a comparison of free-form surfaces in clear water demonstrate the high accuracy potential in the range of one millimeter to less than one centimeter, depending on the measurement distance. Mobile underwater mapping and motion compensation based on visual-inertial odometry is demonstrated using a new optical underwater scanner based on fringe projection. Continuous registration of individual scans allows the acquisition of 3D models from an underwater vehicle. RGB images captured in parallel are used to create 3D point clouds of underwater scenes in full color. 3D maps are useful to the operator during the remote control of underwater vehicles and provide the building blocks to enable offshore inspection and surveying tasks. The advancing automation of the measurement technology will allow non-experts to use it, significantly reduce acquisition time and increase accuracy, making underwater metrology more cost-effective.}, subject = {Selbstkalibrierung}, language = {en} }