@phdthesis{Jovcic2002, author = {Jovcic, Alexander}, title = {Applications of aerobic and anaerobic bacteria in the fields of biological degradation of contaminants and biological wastewater treatment}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-6702}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2002}, abstract = {In the work here presented four distinctly different problems were investigated. The first problem was an investigation into the degradation of Dichloroethylene (DCE) and 1,1-bis (p-Chlorophenyl)-2-dichloroethylene (DDE) utilising pure bacterial cultures. The second investigation dealt with the degradation of DDE and polychlorinated Biphenyl's (PCB's) utilising anaerobic sediments and soils from New Zealand. The third investigation worked on the Granulation of anaerobic River-sediments in Upflow Anaerobic Sludge Blanket (UASB) Reactors. The last investigation describes the commissioning of an industrial aerobic Wastewater Treatment Plant and the Implementation of biological Nitrogen- and Phosphate removal in this Wastewater Treatment Plant. Since the chemical Structure of DCE and DDE have certain similarities, Bacteria that were capable of degrading DCE, were tested here, whether they would also be able to degrade DDE utilising a co-metabolic pathway. In the experiments the aerobic bacteria Methylosinus trichosporium and Mycobacterium vaccae and the anaerobic bacteria Acetobacterium woodii and Clostridium butyricum were used. Approximately 60\% of the added DCE was degraded by M. vaccae, while M. trichosporium degraded approximately 50\%. A. woodii and C. butyricum degraded 40\% and 30\% respectively of the added DCE. Further experiments with these cultures and DDE lead to a microbial degradation of DDE to an extent of 34.6\% for M. vaccae, 14.1\% for C. butyricum, 2.2\% for A. woodii and 10.5\% for M. trichosporium. Additional experiments, utilising [14C]-DDE, showed that the DDE had not been degraded but were attached to the bacterial cells. The second investigation utilised anaerobic soils and sediments from New Zealand to study the anaerobic co-metabolic degradation of DDE and PCB's. The soils and sediments originated from the River Waikato, from Wastewater Ponds in Kinleith, Marine-Sediments from Mapua, and a variety of soils comtaminated with Pentachlorophenyl (PCP). The cultures from these soils and sediments were raised on a variety of Carbon- and Energy-sources. Beside DDE, Aroclor 1260, and a mix of four pure PCB-Congeneres (one Tetra-, one Hexa, one Hepta- and one Deca-Chlorobiphenyl) were used to test for the reductive dechlorination. The cultivation process of the baceria lasted six months. Samples of the cultures were taken after zero, three and six months. These samples were tested for the increase of cell-protein, the degradation of carbon- and energy-sources, and the removal of the added polychlorinated chemicals. The organochlorines were analysed using reversed phase HPLC and FID-GC. When a change in the Chromatogram was detected the respective cultures were further analysed using ECD-GC and GC-MS. The results showed that the culutres grew under these conditions, but no degradation of DDE and the PCB-Mix could be detected, and only small changes in the composition/chromatograms of Aroclor 1260 were found. The third investigation worked on the Granulation of River-Sediments in UASB-Reactors. Sediments from the River Waikato in New Zealand and the River Saale in Germany were used. In both cases the Granulation process was successful, which was demonstrated by microscopic comparisons of the Sediments and the resulting Granules. The two main bacterial cultures detected were Methanosarcina- and Methanothrix-like cultures. The main carbon- and energy-source was Lactic Acid, which was used at a concentration of 21,8 g COD/L. The Granulation-Process was a combination of using high a COD-Concentration combined with a low Volumetric Loading-Rate. Comparisons of the specific degradation-rates of a variety of carbon- and energy-sources between the Sediments and the Granules, showed no increased degradation rates in regard to the same cell-mass, but the increased bio-mass in the Granules allowed for higher degradation-rates within the UASB-reactors. The fourth investigation describes the commissioning of an industrial Wastewater Treatment Plant for a Dairy-Site in Edendale, Southland, New Zealand. This Plant consists of a DAF-Unit (Dissolved Air Flotation), two Extended Aeration Lagoons with Activated Sludge and two Clarifiers, one for the Activated Sludge and the second for the dosing of Aluminium-Sulphate and the removal of Phosphat-Sulphate. Biological processes for the removal of carbon- and energy-sources were optimised and biological processes for the reduction of Nitrogen- and Phosphate-Concentrations within the wastewater were implemented and optimised. Bilogical removal rates for COD of 95\% and above, for Nitrogen of 85-92\% and Phosphate of 64-83\% were achieved.}, subject = {Biologische Abwasserreinigung}, language = {en} }