@phdthesis{Herget2019, author = {Herget, Verena}, title = {A novel approach for the calibration of the hadronic recoil for the measurement of the mass of the W boson with the ATLAS Experiment}, doi = {10.25972/OPUS-17782}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-177828}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {The measurement of the mass of the \$W\$ boson is currently one of the most promising precision analyses of the Standard Model, that could ultimately reveal a hint for new physics. The mass of the \$W\$ boson is determined by comparing the \$W\$ boson, which cannot be reconstructed directly, to the \$Z\$ boson, where the full decay signature is available. With the help of Monte Carlo simulations one can extrapolate from the \$Z\$ boson to the \$W\$ boson. Technically speaking, the measurement of the \$W\$ boson mass is performed by comparing data taken by the ATLAS experiment to a set of calibrated Monte Carlo simulations, which reflect different mass hypotheses.\ A dedicated calibration of the reconstructed objects in the simulations is crucial for a high precision of the measured value. The comparison of simulated \$Z\$ boson events to reconstructed \$Z\$ boson candidates in data allows to derive event weights and scale factors for the calibration. This thesis presents a new approach to reweight the hadronic recoil in the simulations. The focus of the calibration is on the average hadronic activity visible in the mean of the scalar sum of the hadronic recoil \$\Sigma E_T\$ as a function of pileup. In contrast to the standard method, which directly reweights the scalar sum, the dependency to the transverse boson momentum is less strongly affected here. The \$\Sigma E_T\$ distribution is modeled first by means of its pileup dependency. Then, the remaining differences in the resolution of the vector sum of the hadronic recoil are scaled. This is done separately for the parallel and the pterpendicular component of the hadronic recoil with respect to the reconstructed boson. This calibration was developed for the dataset taken by the ATLAS experiment at a center of mass energy of \$8\,\textrm{TeV}\$ in 2012. In addition, the same reweighting procedure is applied to the recent dataset with a low pileup contribution, the \textit{lowMu} runs at \$5\,\textrm{TeV}\$ and at \$13\,\textrm{TeV}\$, taken by ATLAS in November 2017. The dedicated aspects of the reweighting procedure are presented in this thesis. It can be shown that this reweighting approach improves the agreement between data and the simulations effectively for all datasets. The uncertainties of this reweighting approach as well as the statistical errors are evaluated for a \$W\$ mass measurement by a template fit to pseudodata for the \textit{lowMu} dataset. A first estimate of these uncertainties is given here. For the pfoEM algorithm a statistical uncertainty of \$17\,\text{MeV}\$ for the \$5\,\textrm{TeV}\$ dataset and of \$18\,\text{MeV}\$ for the \$13\,\textrm{TeV}\$ are found for the \$W \rightarrow \mu \nu\$ analysis. The systematic uncertainty introduced by the resolution scaling has the largest effect, a value of \$15\,\text{MeV}\$ is estimated for the \$13\,\textrm{TeV}\$ dataset in the muon channel.}, subject = {Standardmodell }, language = {en} } @phdthesis{Lang2017, author = {Lang, Jean-Nicolas Olivier}, title = {Automation of electroweak NLO corrections in general models}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-154426}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {The thesis deals with the automated generation and efficient evaluation of scattering amplitudes in general relativistic quantum field theories at one-loop order in perturbation theory. At the present time we lack signals beyond the Standard Model which, in the past, have guided the high-energy physics community, and ultimately led to the discovery of new physics phenomena. In the future, precision tests could acquire this guiding role by systematically probing the Standard Model and constraining Beyond the Standard Model theories. As current experimental constraints strongly favour Standard Model-like theories, only small deviations with respect to the Standard Model are expected which need to be studied in detail. The required precision demands one-loop corrections in all future analyses, ideally in a fully automated way, allowing to test a variety of observables in different models and in an effective field theory approach. In the process of achieving this goal we have developed an enhanced version of the tool Recola and on this basis the generalization Recola2. These tools represent fully automated tree- and one-loop-amplitude providers for the Standard Model, or in the case of Recola2 for general models. Concerning the algorithm, we use a purely numerical and fully recursive approach allowing for extreme calculations of yet unmatched complexity. Recola has led to the first computation involving 9-point functions. Beyond the Standard Model theories and Effective Field theories are integrated into the Recola2 framework as model files. Renormalized model files are produced with the newly developed tool Rept1l, which can perform the renormalization in a fully automated way, starting from nothing but Feynman rules. In view of validation, we have extended Recola2 to new gauges such as the Background-Field Method and the class of Rxi gauges. In particular, the Background-Field Method formulation for new theories serves as an automated validation, and is very useful in practical calculations and the formulation of renormalization conditions. We have applied the system to produce the first results for Higgs-boson production in Higgs strahlung and vector-boson fusion in the Two-Higgs-Doublet Model and the Higgs-Singlet Extension of the Standard Model. All in all, we have laid the foundation for an automated generation and computation of one-loop amplitudes within a large class of phenomenologically interesting theories. Furthermore, we enable the use of our system via a very flexible and dynamic control which does not require any intermediate intervention.}, subject = {Standardmodell }, language = {en} } @phdthesis{Krauss2015, author = {Krauß, Manuel Ernst}, title = {Non-minimal supersymmetric models: LHC phenomenology and model discrimination}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-123555}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {It is generally agreed upon the fact that the Standard Model of particle physics can only be viewed as an effective theory that needs to be extended as it leaves some essential questions unanswered. The exact realization of the necessary extension is subject to discussion. Supersymmetry is among the most promising approaches to physics beyond the Standard Model as it can simultaneously solve the hierarchy problem and provide an explanation for the dark matter abundance in the universe. Despite further virtues like gauge coupling unification and radiative electroweak symmetry breaking, minimal supersymmetric models cannot be the ultimate answer to the open questions of the Standard Model as they still do not incorporate neutrino masses and are besides heavily constrained by LHC data. This does, however, not derogate the beauty of the concept of supersymmetry. It is therefore time to explore non-minimal supersymmetric models which are able to close these gaps, review their consistency, test them against experimental data and provide prospects for future experiments. The goal of this thesis is to contribute to this process by exploring an extraordinarily well motivated class of models which bases upon a left-right symmetric gauge group. While relaxing the tension with LHC data, those models automatically include the ingredients for neutrino masses. We start with a left-right supersymmetric model at the TeV scale in which scalar \(SU(2)_R\) triplets are responsible for the breaking of left-right symmetry as well as for the generation of neutrino masses. Although a tachyonic doubly-charged scalar is present at tree-level in this kind of models, we show by performing the first complete one-loop evaluation that it gains a real mass at the loop level. The constraints on the predicted additional charged gauge bosons are then evaluated using LHC data, and we find that we can explain small excesses in the data of which the current LHC run will reveal if they are actual new physics signals or just background fluctuations. In a careful evaluation of the loop-corrected scalar potential we then identify parameter regions in which the vacuum with the phenomenologically correct symmetry-breaking properties is stable. Conveniently, those regions favour low left-right symmetry breaking scales which are accessible at the LHC. In a slightly modified version of this model where a \(U(1)_R × U(1)_{B-L}\) gauge symmetry survives down to the TeV scale, we implement a minimal gauge-mediated supersymmetry breaking mechanism for which we calculate the boundary conditions in the presence of gauge kinetic mixing. We show how the presence of the extended gauge group raises the tree-level Higgs mass considerably so that the need for heavy supersymmetric spectra is relaxed. Taking the constraints from the Higgs sector into account, we then explore the LHC phenomenology of this model and point out where the expected collider signatures can be distinguished from standard scenarios. In particular if neutrino masses are explained by low-scale seesaw mechanisms as is done throughout this work, there are potentially spectacular signals at low-energy experiments which search for charged lepton flavour violation. The last part of this thesis is dedicated to the detailed exploration of processes like μ → e γ, μ → 3 e or μ-e conversion in nuclei in a supersymmetric framework with an inverse seesaw mechanism. In particular, we disprove claims about a non-decoupling effect in Z-mediated three-body decays and study the prospects for discovering and distinguishing signals at near-future experiments. In this context we identify the possibility to deduce from ratios like BR(\(τ → 3 μ\))/BR(\(τ → μ e^+ e^-\)) whether the contributions from ν - W loops dominate over supersymmetric contributions or vice versa.}, subject = {Supersymmetrie}, language = {en} } @phdthesis{Schutzmeier2009, author = {Schutzmeier, Thomas}, title = {Matrix elements for the B -> X decay at NNLO}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-50026}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {Einer der interssantesten Prozesse im Flavour Sektor des Standard Modells (SM) im Kontext der indirekten Suche nach neuer Physik ist der seltene inklusive Zerfall B -> Xs gamma. Dieser Zerfallskanal entspricht einem neutralen Strom mit Wechsel des Flavours zwischen Anfangs- und Endzustand. Im SM ist ein solcher Uebergang unterdrueckt, da er nur ueber Schleifenbeitraege erfolgen kann, und ist somit sensitiv auf Beitraege neuer Physik. Darueber hinaus sind nichtperturbative Beitraege moderat, was praezise theoretische Vorhersagen im Rahmen einer effektiven Niederenergie Theorie ermoeglicht. Sowohl praezise Messungen als auch genaue theoretische Vorhersagen mit einer guten Kontrolle ueber perturbative und nichtperturbative Effekte sind notwendig, um den Parameterraum von Modellen jenseits des SM einzuschraenken. Experimentell wurde die Zerfallsrate B -> Xs gamma vor Allem mit Hilfe der spezialisierten Experimente BaBar und Belle an den sogenannten B Fabriken mit einer hervorragenden Genauigkeit gemessen. Um diese Praezision auch in der theoretische Vorhersage zu erhalten, sind hoehere Ordnungen in der effektiven Stoerungstheorie essentiell. Tatsaechlich fuehrt erst die Beruecksichtigung von QCD Korrekturen auf der naechst-zu-naechst-zu hoeheren Ordnung (NNLO) in Stoerungstheorie zu einer mit dem Experiment vergleichbaren theoretischen Unsicherheit. Die Bestimmung des Verzweigungsverhaeltnisses von B -> Xs gamma auf NNLO wurde innerhalb der letzten zehn Jahre von mehreren Arbeitsgruppen angegangen. Ein Gro"steil dieses Projekts wurde abgeschlossen und eine erste Abschaetzung auf diesem Niveau der Stoerungstheorie 2006 publiziert. Allerdings standen fuer diese Vorhersage nicht alle Beitraege von nach wie vor unbekannten Matrixelementen zur Verfuegung, die nur aus partiell bekannten Resultaten abgeschaetzt werden mussten. In dieser Arbeit bereiten wir einen Rahmen fuer die systematische Bestimmung der noch nicht verfuegbaren Matrixelemente auf NNLO. Ein Hauptergebnis dieser Dissertation ist die Bestimmung von fermionischen Korrekturen zu Matrixelementen von Vier-Quark Operatoren in der effektiven Theorie. Erstmalig wird hierbei die volle Massenabhaengigkeit beruecksichtigt. Ein weiterer Schwerpunkt liegt auf der Berechnung von fermionischen als auch bosonischen Korrekturen im Grenzwert einer verschwindenden Masse des Charm Quarks. Zusammen mit noch unbekannten reellen Korrekturen werden diese Ergebnisse dazu beitragen, die Unsicherheit der NNLO Vorhersage signifikant zu reduzieren. Ein wesentlicher Bestandteil dieser Arbeit, der die hier durchgefuehrten Berechnungen erst ermoeglichte, ist die Entwicklung einer automatisierten Methode zur hochpreazisen Bestimmung von Vielschleifenintegralen die zwei Massenskalen enthalten.}, subject = {Flavour }, language = {en} } @phdthesis{Mueck2004, author = {M{\"u}ck, Alexander}, title = {The standard model in 5D : theoretical consistency and experimental constraints}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-10591}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {The four-dimensional Minkowski space is known to be a good description for space-time down to the length scales probed by the latest high-energy experiments. Nevertheless, there is the viable and exciting possibility that additional space-time structure will be observable in the next generation of collider experiments. Hence, we discuss different extensions of the standard model of particle physics with an extra dimension at the TeV-scale. We assume that some of the gauge and Higgs bosons propagate in one additional spatial dimension, while matter fields are confined to a four-dimensional subspace, the usual Minkowski space. After compactification on an S^1/Z_2 orbifold, an effective four-dimensional theory is obtained where towers of Kaluza-Klein (KK) modes, in addition to the standard model fields, reflect the higher-dimensional structure of space-time. The models are elaborated from the 5D Lagrangian to the Feynman rules of the KK modes. Special attention is paid to an appropriate generalization of the Rxi-gauge and the interplay between spontaneous symmetry breaking and compactification. Confronting the observables in 5D standard model extensions with combined precision measurements at the Z-boson pole and the latest data from LEP2, we constrain the possible size R of the extra dimension experimentally. A multi-parameter fit of all relevant input parameters leads to bounds for the compactification scale M=1/R in the range 4-6 TeV at the 2 sigma confidence level and shows how the mass of the Higgs boson is correlated with the size of an extra dimension. Considering a future linear e+e- collider, we outline the discovery potential for an extra dimension using the proposed TESLA specifications as an example. As a consistency check for the various models, we analyze Ward identities and the gauge boson equivalence theorem in W-pair production and find that gauge symmetry is preserved by a complex interplay of the Kaluza-Klein modes. In this context, we point out the close analogy between the traditional Higgs mechanism and mass generation for gauge bosons via compactification. Beyond the tree-level, the higher-dimensional models studied extensively in the literature and in the first part of this thesis have to be extended. We modify the models by the inclusion of brane kinetic terms which are required as counter terms. Again, we derive the corresponding 4D theory for the KK towers paying special attention to gauge fixing and spontaneous symmetry breaking. Finally, the phenomenological implications of the new brane kinetic terms are investigated in detail.}, subject = {Standardmodell }, language = {en} }