@article{KroeberWengerSchwegleretal.2015, author = {Kroeber, Jana and Wenger, Barbara and Schwegler, Manuela and Daniel, Christoph and Schmidt, Manfred and Djuzenova, Cholpon S and Polat, B{\"u}lent and Flentje, Michael and Fietkau, Rainer and Distel, Luitpold V.}, title = {Distinct increased outliers among 136 rectal cancer patients assessed by \(\gamma\)H2AX}, series = {Radiation Oncology}, volume = {10}, journal = {Radiation Oncology}, number = {36}, doi = {10.1186/s13014-015-0344-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-144085}, year = {2015}, abstract = {Background: In recent years attention has focused on \(\gamma\)H2AX as a very sensitive double strand break indicator. It has been suggested that \(\gamma\)H2AX might be able to predict individual radiosensitivity. Our aim was to study the induction and repair of DNA double strand breaks labelled by \(\gamma\)H2AX in a large cohort. Methods: In a prospective study lymphocytes of 136 rectal cancer (RC) patients and 59 healthy individuals were ex vivo irradiated (IR) and initial DNA damage was compared to remaining DNA damage after 2 Gy and 24 hours repair time and preexisting DNA damage in unirradiated lymphocytes. Lymphocytes were immunostained with anti-\(\gamma\)H2AX antibodies and microscopic images with an extended depth of field were acquired. \(\gamma\)H2AX foci counting was performed using a semi-automatic image analysis software. Results: Distinct increased values of preexisting and remaining \(\gamma\)H2AX foci in the group of RC patients were found compared to the healthy individuals. Additionally there are clear differences within the groups and there are outliers in about 12\% of the RC patients after ex vivo IR. Conclusions: The \(\gamma\)H2AX assay has the capability to identify a group of outliers which are most probably patients with increased radiosensitivity having the highest risk of suffering radiotherapy-related late sequelae.}, language = {en} } @article{KugerFlentjeDjuzenova2015, author = {Kuger, Sebastian and Flentje, Michael and Djuzenova, Cholpon S.}, title = {Simultaneous perturbation of the MAPK and the PI3K/mTOR pathways does not lead to increased radiosensitization}, series = {Radiation Oncology}, volume = {10}, journal = {Radiation Oncology}, number = {214}, doi = {10.1186/s13014-015-0514-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126104}, year = {2015}, abstract = {Background The mitogen-activated protein kinases (MAPK) and the phosphatidylinositol-3-kinase (PI3K)/mammalian target of rapamycin (mTOR) pathways are intertwined on various levels and simultaneous inhibition reduces tumorsize and prolonges survival synergistically. Furthermore, inhibiting these pathways radiosensitized cancer cells in various studies. To assess, if phenotypic changes after perturbations of this signaling network depend on the genetic background, we integrated a time series of the signaling data with phenotypic data after simultaneous MAPK/ERK kinase (MEK) and PI3K/mTOR inhibition and ionizing radiation (IR). Methods The MEK inhibitor AZD6244 and the dual PI3K/mTOR inhibitor NVP-BEZ235 were tested in glioblastoma and lung carcinoma cells, which differ in their mutational status in the MAPK and the PI3K/mTOR pathways. Effects of AZD6244 and NVP-BEZ235 on the proliferation were assessed using an ATP assay. Drug treatment and IR effects on the signaling network were analyzed in a time-dependent manner along with measurements of phenotypic changes in the colony forming ability, apoptosis, autophagy or cell cycle. Results Both inhibitors reduced the tumor cell proliferation in a dose-dependent manner, with NVP-BEZ235 revealing the higher anti-proliferative potential. Our Western blot data indicated that AZD6244 and NVP-BEZ235 perturbed the MAPK and PI3K/mTOR signaling cascades, respectively. Additionally, we confirmed crosstalks and feedback loops in the pathways. As shown by colony forming assay, the AZD6244 moderately radiosensitized cancer cells, whereas NVP-BEZ235 caused a stronger radiosensitization. Combining both drugs did not enhance the NVP-BEZ235-mediated radiosensitization. Both inhibitors caused a cell cycle arrest in the G1-phase, whereas concomitant IR and treatment with the inhibitors resulted in cell line- and drug-specific cell cycle alterations. Furthermore, combining both inhibitors synergistically enhanced a G1-phase arrest in sham-irradiated glioblastoma cells and induced apoptosis and autophagy in both cell lines. Conclusion Perturbations of the MEK and the PI3K pathway radiosensitized tumor cells of different origins and the combination of AZD6244 and NVP-BEZ235 yielded cytostatic effects in several tumor entities. However, this is the first study assessing, if the combination of both drugs also results in synergistic effects in terms of radiosensitivity. Our study demonstrates that simultaneous treatment with both pathway inhibitors does not lead to synergistic radiosensitization but causes cell line-specific effects.}, language = {en} } @article{DjuzenovaZimmermannKatzeretal.2015, author = {Djuzenova, Cholpon S. and Zimmermann, Marcus and Katzer, Astrid and Fiedler, Vanessa and Distel, Luitpold V. and Gasser, Martin and Waaga-Gasser, Anna-Maria and Flentje, Michael and Polat, B{\"u}lent}, title = {A prospective study on histone γ-H2AX and 53BP1 foci expression in rectal carcinoma patients: correlation with radiation therapy-induced outcome}, series = {BMC Cancer}, volume = {15}, journal = {BMC Cancer}, number = {856}, doi = {10.1186/s12885-015-1890-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125303}, year = {2015}, abstract = {Background The prognostic value of histone γ-H2AX and 53BP1 proteins to predict the radiotherapy (RT) outcome of patients with rectal carcinoma (RC) was evaluated in a prospective study. High expression of the constitutive histone γ-H2AX is indicative of defective DNA repair pathway and/or genomic instability, whereas 53BP1 (p53-binding protein 1) is a conserved checkpoint protein with properties of a DNA double-strand breaks sensor. Methods Using fluorescence microscopy, we assessed spontaneous and radiation-induced foci of γ-H2AX and 53BP1 in peripheral blood mononuclear cells derived from unselected RC patients (n = 53) undergoing neoadjuvant chemo- and RT. Cells from apparently healthy donors (n = 12) served as references. Results The γ-H2AX assay of in vitro irradiated lymphocytes revealed significantly higher degree of DNA damage in the group of unselected RC patients with respect to the background, initial (0.5 Gy, 30 min) and residual (0.5 Gy and 2 Gy, 24 h post-radiation) damage compared to the control group. Likewise, the numbers of 53BP1 foci analyzed in the samples from 46 RC patients were significantly higher than in controls except for the background DNA damage. However, both markers were not able to predict tumor stage, gastrointestinal toxicity or tumor regression after curative RT. Interestingly, the mean baseline and induced DNA damage was found to be lower in the group of RC patients with tumor stage IV (n = 7) as compared with the stage III (n = 35). The difference, however, did not reach statistical significance, apparently, because of the limited number of patients. Conclusions The study shows higher expression of γ-H2AX and 53BP1 foci in rectal cancer patients compared with healthy individuals. Yet the data in vitro were not predictive in regard to the radiotherapy outcome.}, language = {en} }