@article{LangMessmerGeerlingetal.2015, author = {Lang, Stefan J. and Messmer, Elisabeth M. and Geerling, Gerd and Mackert, Marc J. and Brunner, Tobias and Dollak, Sylvia and Kutchoukov, Borislav and B{\"o}hringer, Daniel and Reinhard, Thomas and Maier, Philip}, title = {Prospective, randomized, double-blind trial to investigate the efficacy and safety of corneal cross-linking to halt the progression of keratoconus}, series = {BMC Ophthalmology}, volume = {15}, journal = {BMC Ophthalmology}, number = {78}, doi = {10.1186/s12886-015-0070-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-151498}, year = {2015}, abstract = {Background: Corneal cross-linking is widely used to treat keratoconus. However, to date, only limited data from randomized trials support its efficacy. Methods: The efficacy and safety of corneal cross-linking for halting progression of keratoconus were investigated in a prospective, randomized, blinded, placebo controlled, multicentre trial. Twenty-nine keratoconus patients were randomized in three trial centres. The mean age at inclusion was 28 years. Longitudinal changes in corneal refraction were assessed by linear regression. The best corrected visual acuity, surface defects and corneal inflammation were also assessed. These data were analysed with a multifactorial linear regression model. Results: A total of 15 eyes were randomized to the treatment and 14 to the control group. Follow-up averaged 1098 days. Corneal refractive power decreased on average (+/-standard deviation) by 0.35 +/- 0.58 dioptres/year in the treatment group. The controls showed an increase of 0.11 +/- 0.61 dioptres/year. This difference was statistically significant (p = 0.02). Conclusions: Our data suggest that corneal cross-linking is an effective treatment for some patients to halt the progression of keratoconus. However, some of the treated patients still progressed, whereas some untreated controls improved. Therefore, further investigations are necessary to decide which patients require treatment and which do not.}, language = {en} } @article{WaltherZimmermannTheuersbacheretal.2021, author = {Walther, Grit and Zimmermann, Anna and Theuersbacher, Johanna and Kaerger, Kerstin and Lilienfeld-Toal, Marie von and Roth, Mathias and Kampik, Daniel and Geerling, Gerd and Kurzai, Oliver}, title = {Eye infections caused by filamentous fungi: spectrum and antifungal susceptibility of the prevailing agents in Germany}, series = {Journal of Fungi}, volume = {7}, journal = {Journal of Fungi}, number = {7}, issn = {2309-608X}, doi = {10.3390/jof7070511}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-241810}, year = {2021}, abstract = {Fungal eye infections can lead to loss of vision and blindness. The disease is most prevalent in the tropics, although case numbers in moderate climates are increasing as well. This study aimed to determine the dominating filamentous fungi causing eye infections in Germany and their antifungal susceptibility profiles in order to improve treatment, including cases with unidentified pathogenic fungi. As such, we studied all filamentous fungi isolated from the eye or associated materials that were sent to the NRZMyk between 2014 and 2020. All strains were molecularly identified and antifungal susceptibility testing according to the EUCAST protocol was performed for common species. In total, 242 strains of 66 species were received. Fusarium was the dominating genus, followed by Aspergillus, Purpureocillium, Alternaria, and Scedosporium. The most prevalent species in eye samples were Fusarium petroliphilum, F. keratoplasticum, and F. solani of the Fusarium solani species complex. The spectrum of species comprises less susceptible taxa for amphotericin B, natamycin, and azoles, including voriconazole. Natamycin is effective for most species but not for Aspergillus flavus or Purpureocillium spp. Some strains of F. solani show MICs higher than 16 mg/L. Our data underline the importance of species identification for correct treatment.}, language = {en} }