@article{LiuVonhausenSchulzetal.2022, author = {Liu, Bin and Vonhausen, Yvonne and Schulz, Alexander and H{\"o}bartner, Claudia and W{\"u}rthner, Frank}, title = {Peptide Backbone Directed Self-Assembly of Merocyanine Oligomers into Duplex Structures}, series = {Angewandte Chemie International Edition}, volume = {61}, journal = {Angewandte Chemie International Edition}, number = {21}, doi = {10.1002/anie.202200120}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-318797}, year = {2022}, abstract = {The pseudopeptide backbone provided by N-(2-aminoethyl)-glycine oligomers with attached nucleobases has been widely utilized in peptide nucleic acids (PNAs) as DNA mimics. Here we demonstrate the suitability of this backbone for the formation of structurally defined dye stacks. Toward this goal a series of peptide merocyanine (PMC) dye oligomers connected to a N-(2-aminoethyl)-glycine backbone were prepared through peptide synthesis. Our concentration-, temperature- and solvent-dependent UV/Vis absorption studies show that under the control of dipole-dipole interactions, smaller-sized oligomers consisting of one, two or three dyes self-assemble into defined duplex structures containing two up to six chromophores. In contrast, upon further extension of the oligomer, the chosen peptide backbone cannot direct the formation of a defined duplex architecture anymore due to intramolecular aggregation between the dyes. For all aggregate species a moderate aggregation-induced emission enhancement is observed.}, language = {en} } @article{SchulzWuerthner2022, author = {Schulz, Alexander and W{\"u}rthner, Frank}, title = {Folding-induced fluorescence enhancement in a series of merocyanine hetero-folda-trimers}, series = {Angewandte Chemie International Edition}, volume = {61}, journal = {Angewandte Chemie International Edition}, number = {2}, doi = {10.1002/anie.202114667}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256582}, year = {2022}, abstract = {Many dyes suffer from fast non-radiative decay pathways, thereby showing only short-lived excited states and weak photoluminescence. Here we show a pronounced fluorescence enhancement for a weakly fluorescent merocyanine (MC) dye by being co-facially stacked to other dyes in hetero-folda-trimer architectures. By means of fluorescence spectroscopy (lifetime, quantum yield) the fluorescence enhancement was explained by the rigidification of the emitting chromophore in the defined foldamer architecture and the presence of a non-forbidden lowest exciton state in H-coupled hetero-aggregates. This folding-induced fluorescence enhancement (FIFE) for specific sequences of π-stacked dyes points at a viable strategy toward improved fluorophores that relates to the approach used by nature in the green fluorescent protein (GFP).}, language = {en} }