@inproceedings{FrankeZentgrafScheer1978, author = {Franke, Werner W. and Zentgraf, Hanswalter and Scheer, Ulrich}, title = {Supranucleosomal and non-nucleosomal chromatin configurations}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-39447}, year = {1978}, abstract = {A significant contribution to the understanding of chromatin organization was the d iscovery of the nucleosome as a globular repeating unit of the package of DNA (Hewish and Burgoyne, 1973; Woodcock, 1973; Kornberg, 1974; Olins and Olins, 1974; for review see Oudet et al., 1978 a) . In accord with the original definition and in ag reement with most workers in this field of research we identify a nucleosome as a spheric alor slightly oblate gr anular particle 10-13 nm in diameter, containing about 200 base pairs of DNA and two of each of the four his tones H2a, H2b, H3 and H4. It is this structure in which the bulk of the nuclear chroma tin is organized in most eukaryotic cells, with the exception of the dinofl age llates (Rae and Steele, 1977; dinofl agellate DNA, however, c an be packed into nucleosoma l structures in vitro by addition of the appropriate amounts of histones;the same reference). Although it seems clear from the work reported that condensed and transcriptiona lly inactive chroma tin is contained in nucleosomes as the principle for first order p acking of DNA there are two important questions onto which we are focusing in the present study: ( i ) What is the higher order of p a cking present in - and perhaps typical-of - the condensed sta te of chromatin, and (ii) what is the specific form of arrangement of transcriptionally a ctive chromatin?}, language = {en} } @article{ScheerZentgraf1978, author = {Scheer, Ulrich and Zentgraf, Hanswalter}, title = {Nucleosomal and supranucleosomal organization of transcriptionally inactive rDNA circles in Dytiscus oocytes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-33188}, year = {1978}, abstract = {Oocytes of the water beetle, Dytiscus marginalis, contain large amounts of rDNA most of which is present in the form of rings containing one or several pre-rRNA genes. Electron microscopy of spread preparations of vitellogenic oocytes has shown that the rDNA is extended in chromatin rings with transcribed pre- rRNA genes and is not packed into nucleosomes (Trendelenburg eta!. , 1976). When similar preparations are made from previtellogenic ooytes in which a large proportion of the nuc1eolar chromatin is transcriptionally inactive, a different morphological form of this chromatin is recognized. In contrast to the transcribed chromatin rings the inactive nucleolar chromatin circles show the characteristic beaded configuration, indicative of nucleosomal packing. Nuc1eosomal packing is also indicated by the comparison of the lengths of these chromatin rings with both iso lated rDNA circ1es and transcribed chromatin rings. In addition, these inactive nuc1eofilaments often appear to be compacted into globular higher order structures of diameters from 21 to 34nm, each composed of an aggregate of 6-9 nuc1eosomes. While the estimated reduction of the overall length of rDNA, as seen in our preparations, is, on the average, only 2.2 - 2.4 fold in the nuc1eosomal state it is 10- 13 fold when supranuc1eosomal globules are present. These data show that the extrachromosomal rDNA of these oocytes goes through a cycle of condensation and extensio n, as a function of the specific transcriptional activity, and that the beaded state described here is exc1usively found in the non-transcribed state.}, language = {en} }