@phdthesis{Almeling2011, author = {Almeling, Stefan}, title = {The use of aerosol-based detection systems in the quality control of drug substances}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-64722}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {The work presented in this thesis was mainly targeted at exploring the capabilities of evaporation based LC detectors as well as further alternatives for the control of impurities in substances not exhibiting a suitable chromophore for UV-detection. In the course of the work carried out, several new methods for the identification, impurities control and composition testing of APIs were elaborated. An evaporation based detector that entered into the field of pharmaceutical analysis in the recent years was the Evaporative Light Scattering Detector (ELSD). However, non-reproducible spikes were reported when injecting concentrated test solutions as they are usually required for the control of impurities. The reasons, for the appearance of these spikes as well as possibilities for their avoidance were explored in a systematic study. Moreover, the dependence of the detector sensitivity on different eluent composition, eluent flow-rate and ELSD settings was investigated. In the course of the revision of the Ph.Eur. monographs for aspartic acid and alanine, a C18 reversed phase ion-pair LC method using 1 mmol/L of perfluoroheptanoic acid as an ion-pair reagent and a charged aerosol detector (CAD) was developed and fully validated for the purity control of Asp. The method was capable of separating the organic acids and major amino acids known to occur as process related impurities. With a slight modification, the method was also applicable for the purity control of Ala. Based on the developed LC-CAD method for the impurity control of alanine, a comparative study of the performance characteristics of different evaporation based LC detectors, i.e. ELSD, CAD and the recently developed Nano Quantity Analyte Detector (NQAD) was carried out. Additionally, an MS detector and qNMR were included in this study. It was found that the control of impurities in Alanine at an ICH conform level could be ensured using LC coupled to CAD, MSD and NQAD detection as well as by the use of qNMR. In terms of performance, prize and ease of use CAD and NQAD were found to be the most suitable alternatives. In terms of repeatability and sensitivity, the CAD appeared slightly superior to the NQAD. The quality of streptomycin sulfate is not sufficiently controlled by the current Ph.Eur. monograph in that an appropriate test for the control of the related substances is missing. A study was carried out to develop a C18 reversed phase ion-pair LC method using pentafluoropropionic acid as an ion-pair reagent and a CAD for the identification and control of the related substances. The developed method allowed the separation of 21 impurities from streptomycin. Moreover, coupling of the method to MS allowed the identification of the separated impurities. The method was shown to be sufficiently sensitive to control the related substances with a disregard limit of 0.1\% as it is normally applied in the Ph.Eur. for products derived from fermentation. Currently, the aescin content of horse-chestnut standardized dry extract is determined using a complex and laborious photometric determination. A more selective LC-UV assay determination for beta-aescin has been proposed for the Ph.Eur. draft monograph of horse-chestnut standardized dry extract. Possibilities were explored to further improve the LC-method using detection by CAD. It was demonstrated that by the use of a modified LC-CAD method several problems related to the differences in the UV-response of the various components contained in the active aescin fraction could be eliminated. Moreover the proposed reference standard strategy was reviewed. Eventually, it was demonstrated on the example of two different clusters of pharmacologically active peptides how low energy collision induced dissociation mass spectrometry (low energy CID-MS) can successfully be used for identification testing in pharmacopoeial monographs. In this respect, the combination of a direct confirmation of the molecular mass via the m/z-ratio of the molecule ions with structural sequence information obtained by low energy CID-MS experiments was found to deliver a higher degree of certainty of the identity of a given substance than the set of tests currently described in the monographs. A significant gain in efficiency and throughput and important reduction of the amount of sample consumed during testing were identified as being additional advantages of this approach. Taken together, it could be demonstrated on various examples how recent technological advancements in the field of analytical chemistry can contribute to improve the quality control of APIs.}, subject = {Elektronensprayionisations-Massenspektrometrie}, language = {en} }