@article{LuedemannJakuscheitEwaldetal.2021, author = {L{\"u}demann, Martin and Jakuscheit, Axel and Ewald, Andrea and Fr{\"u}hmann, Leena and H{\"o}lscher-Doht, Stefanie and Rudert, Maximilian and von Hertzberg-Boelch, Sebastian Philipp}, title = {Influence of Tranexamic Acid on Elution Characteristics and Compressive Strength of Antibiotic-Loaded PMMA-Bone Cement with Gentamicin}, series = {Materials}, volume = {14}, journal = {Materials}, number = {19}, issn = {1996-1944}, doi = {10.3390/ma14195639}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-246236}, year = {2021}, abstract = {Purpose: The topical application of tranexamic acid (TXA) into the joint space during total joint arthroplasty (TJA) with no increase of complications, has been widely reported. We investigated the influence of TXA on antibiotic release, activity of the released antibiotic against a clinical isolate of S. aureus, and compressive strength of a widely used commercially prepared gentamicin-loaded cement brand (PALACOS R + G). Method: 12 bone cement cylinders (diameter and height = 6 and 12 mm, respectively) were molded. After curing in air for at least 1 h, six of the cylinders were completely immersed in 5 mL of fetal calf serum (FCS) and the other six were completely immersed in a solution consisting of 4.9 mL of FCS and 0.1 mL (10 mg) of TXA. Gentamicin elution tests were performed over 7 d. Four hundred µL of the gentamicin eluate were taken every 24 h for the first 7 d without renewing the immersion fluid. The gentamicin concentration was determined in a clinical analyzer using a homogeny enzyme immuno-assay. The antimicrobial activity of the eluate, obtained after day 7, was tested. An agar diffusion test regime was used with Staphylococcus aureus. Bacteria were grown in a LB medium and plated on LB agar plates to get a bacterial lawn. Fifty µL of each eluate were pipetted on 12-mm diameter filter discs, which were placed in the middle of the agar gel. After 24 h of cultivation at 37 °C, the zone of inhibition (ZOI) for each specimen was measured. The compressive strength of the cements was determined per ISO 5833. Results: At each time point in the gentamicin release test, the difference in gentamicin concentration, obtained from specimens immersed in the FCS solution only and those immersed in the FCS + TXA solution was not significant (p = 0.055-0.522). The same trend was seen in each of the following parameters, after 7 d of immersion: (1) Cumulative gentamicin concentration (p < 0.297); (2) gentamicin activity against S. aureus (strongly visible); (3) ZOI size (mostly > 20 mm) (p = 0.631); and (4) compressive strength (p = 0.262). Conclusions: For the PALACOS R + G specimens, the addition of TXA to FCS does not produce significant decreases in gentamicin concentration, in the activity of the gentamicin eluate against a clinical isolate of S. aureus, the zone of inhibition of S. aureus, and in the compressive strength of the cement, after 7 d of immersion in the test solution.}, language = {en} } @article{EidmannEwaldBoelchetal.2021, author = {Eidmann, Annette and Ewald, Andrea and Boelch, Sebastian P. and Rudert, Maximilian and Holzapfel, Boris M. and Stratos, Ioannis}, title = {In vitro evaluation of antibacterial efficacy of vancomycin-loaded suture tapes and cerclage wires}, series = {Journal of Materials Science: Materials in Medicine}, volume = {32}, journal = {Journal of Materials Science: Materials in Medicine}, number = {4}, doi = {10.1007/s10856-021-06513-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260089}, pages = {42}, year = {2021}, abstract = {Usage of implants containing antibiotic agents has been a common strategy to prevent implant related infections in orthopedic surgery. Unfortunately, most implants with microbial repellent properties are characterized by accessibility limitations during daily clinical practice. Aim of this in vitro study was to investigate whether suture tapes and cerclage wires, which were treated with vancomycin, show a sustainable antibacterial activity. For this purpose, we used 24 stainless steel wire cerclages and 24 ultra-high molecular weight polyethylene and polyester suture tape test bodies. The test bodies were incubated for 30 min. in 100 mg/ml vancomycin solution or equivalent volumes of 0.9\% NaCl. After measuring the initial solution uptake of the test bodies, antibacterial efficacy via agar diffusion test with Staphylococcus aureus and vancomycin elution tests were performed 1, 2, 3, and 6 days after incubation. Vancomycin-loaded tapes as well as vancomycin-loaded cerclage wires demonstrated increased bacterial growth inhibition when compared to NaCl-treated controls. Vancomycin-loaded tapes showed an additional twofold and eightfold increase of bacterial growth inhibition compared to vancomycin-loaded wires at day 1 and 2, respectively. Elution tests at day 1 revealed high levels of vancomycin concentration in vancomycin loaded tapes and wires. Additionally, the concentration in vancomycin loaded tapes was 14-fold higher when compared to vancomycin loaded wires. Incubating suture tapes and cerclage wires in vancomycin solution showed a good short-term antibacterial activity compared to controls. Considering the ease of vancomycin application on suture tapes or wires, our method could represent an attractive therapeutic strategy in biofilm prevention in orthopedic surgery.}, language = {en} } @article{AbdElAzizElMaghrabyEwaldetal.2021, author = {Abd El-Aziz, Asmaa M. and El-Maghraby, Azza and Ewald, Andrea and Kandil, Sherif H.}, title = {In-vitro cytotoxicity study: cell viability and cell morphology of carbon nanofibrous scaffold/hydroxyapatite nanocomposites}, series = {Molecules}, volume = {26}, journal = {Molecules}, number = {6}, issn = {1420-3049}, doi = {10.3390/molecules26061552}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-234037}, year = {2021}, abstract = {Electrospun carbon nanofibers (CNFs), which were modified with hydroxyapatite, were fabricated to be used as a substrate for bone cell proliferation. The CNFs were derived from electrospun polyacrylonitrile (PAN) nanofibers after two steps of heat treatment: stabilization and carbonization. Carbon nanofibrous (CNF)/hydroxyapatite (HA) nanocomposites were prepared by two different methods; one of them being modification during electrospinning (CNF-8HA) and the second method being hydrothermal modification after carbonization (CNF-8HA; hydrothermally) to be used as a platform for bone tissue engineering. The biological investigations were performed using in-vitro cell counting, WST cell viability and cell morphology after three and seven days. L929 mouse fibroblasts were found to be more viable on the hydrothermally-modified CNF scaffolds than on the unmodified CNF scaffolds. The biological characterizations of the synthesized CNF/HA nanofibrous composites indicated higher capability of bone regeneration.}, language = {en} }