@article{WobserRothAppenzelleretal.2021, author = {Wobser, Marion and Roth, Sabine and Appenzeller, Silke and Houben, Roland and Schrama, David and Goebeler, Matthias and Geissinger, Eva and Rosenwald, Andreas and Maurus, Katja}, title = {Targeted deep sequencing of mycosis fungoides reveals intracellular signaling pathways associated with aggressiveness and large cell transformation}, series = {Cancers}, volume = {13}, journal = {Cancers}, number = {21}, issn = {2072-6694}, doi = {10.3390/cancers13215512}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-250094}, year = {2021}, abstract = {Introduction: Large-cell transformation (LCT) of mycosis fungoides (MF) has been associated with a higher risk of relapse and progression and, consequently, restricted prognosis. Its molecular pathogenesis has not been elucidated yet. Materials and Methods: In order to address molecular mechanisms of LCT, we performed hybrid capture panel-based sequencing of skin biopsies from 10 patients suffering from MF with LCT versus 17 patients without LCT including follow-up biopsies during clinical course, respectively (51 samples in total). The analyzed patients were attributed to three different groups based on the presence of LCT and clinical behavior. Results: While indolent MF cases without LCT did not show pathogenic driver mutations, a high rate of oncogenic alterations was detected in patients with LCT and aggressive clinical courses. Various genes of different oncogenic signaling pathways, including the MAPK and JAK-STAT signaling pathways, as well as epigenetic modifiers were affected. A high inter-individual and distinctive intra-individual mutation diversity was observed. Oncogenic RAS mutations were exclusively detected in patients with LCT. Conclusion: Our data demonstrate that LCT transition of MF is associated with increased frequency of somatic mutations in cancer-associated genes. In particular, the activation of RAS signaling — together with epigenetic dysregulation — may crucially contribute to the molecular pathogenesis of the LCT phenotype, thus conveying its adverse clinical behavior.}, language = {en} } @article{FringsRothRosenwaldetal.2021, author = {Frings, Verena G. and Roth, Sabine and Rosenwald, Andreas and Goebeler, Matthias and Geissinger, Eva and Wobser, Marion}, title = {EBER in situ hybridization in subcutaneous aluminum granulomas/lymphoid hyperplasia: A diagnostic clue to differentiate injection-associated lymphoid hyperplasia from other forms of pseudolymphomas and cutaneous lymphomas}, series = {Journal of Cutaneous Pathology}, volume = {48}, journal = {Journal of Cutaneous Pathology}, number = {5}, doi = {10.1111/cup.13972}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258405}, pages = {625-631}, year = {2021}, abstract = {Background Subcutaneous vaccination or desensitization may induce persistent nodules at the injection sites. Without the knowledge of prior injection, histopathological work-up may be challenging. Objective Aim of this study was to contribute to the histopathological work-up of unclear subcutaneous nodules, especially their differentiation from cutaneous lymphoma. Methods We retrospectively reviewed clinical data and histopathological slides of four patients with subcutaneous nodules, which were suspected to suffer from cutaneous T- or B-cell lymphoma. Sections of these cases and 12 negative controls were stained with hematoxylin and eosin and a standardized immunohistochemical panel of B- and T-cell markers including EBER in situ hybridization as well as electron microscopy. Results In all cases, large histiocytes with granular cytoplasm compatible with intracellular aluminum hydroxide were present. EBER in situ hybridization revealed positive staining of these granular histiocytes while staining was absent in negative controls. Limitations Post hoc completion of medical history revealed that vaccination or specific immunotherapy had been applied before at the biopsy site in only three out of four patients; one patient was lost to follow-up. Conclusion EBER in situ hybridization is an adjunctive tool to differentiate aluminum-induced granuloma/lymphoid hyperplasia from other forms of pseudolymphoma and cutaneous B- or T-cell lymphomas.}, language = {en} }