@article{MahlShoyamaKrauseetal.2020, author = {Mahl, Magnus and Shoyama, Kazutaka and Krause, Ana-Maria and Schmidt, David and W{\"u}rthner, Frank}, title = {Base-Assisted Imidization: A Synthetic Method for the Introduction of Bulky Imide Substituents to Control Packing and Optical Properties of Naphthalene and Perylene Imides}, series = {Angewandte Chemie International Edition}, volume = {59}, journal = {Angewandte Chemie International Edition}, number = {32}, doi = {10.1002/anie.202004965}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-218246}, pages = {13401 -- 13405}, year = {2020}, abstract = {We report the direct imidization of naphthalene and perylene dicarboxylic anhydrides/esters with bulky ortho,ortho-diaryl- and ortho,ortho-dialkynylaniline derivatives. This imidization method uses n-butyllithium as a strong base to increase the reactivity of bulky amine derivatives, proceeds under mild reaction conditions, requires only stoichiometric amounts of reactants and gives straightforward access to new sterically crowded rylene dicarboximides. Mechanistic investigations suggest an isoimide as intermediary product, which was converted to the corresponding imide upon addition of an aqueous base. Single-crystal X-ray diffraction analyses reveal dimeric packing motifs for monoimides, while two-side shielded bisimides crystallize in isolated molecules without close π-π-interactions. Spectroscopic investigations disclose the influence of the bulky substituents on the optical properties in the solid state.}, language = {en} } @article{SchmidtStolteSuessetal.2019, author = {Schmidt, David and Stolte, Matthias and S{\"u}ß, Jasmin and Liess, Dr. Andreas and Stepanenko, Vladimir and W{\"u}rthner, Frank}, title = {Protein-like enwrapped perylene bisimide chromophore as bright microcrystalline emitter material}, series = {Angewandte Chemie International Edition}, volume = {58}, journal = {Angewandte Chemie International Edition}, number = {38}, doi = {10.1002/ange.201907618}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-204809}, pages = {13385-13389}, year = {2019}, abstract = {Strongly emissive solid-state materials are mandatory components for many emerging optoelectronic technologies, but fluorescence is often quenched in the solid state owing to strong intermolecular interactions. The design of new organic pigments, which retain their optical properties despite their high tendency to crystallize, could overcome such limitations. Herein, we show a new material with monomer-like absorption and emission profiles as well as fluorescence quantum yields over 90 \% in its crystalline solid state. The material was synthesized by attaching two bulky tris(4-tert-butylphenyl)phenoxy substituents at the perylene bisimide bay positions. These substituents direct a packing arrangement with full enwrapping of the chromophore and unidirectional chromophore alignment within the crystal lattice to afford optical properties that resemble those of their natural pigment counterparts, in which chromophores are rigidly embedded in protein environments.}, language = {en} }