@unpublished{WangArrowsmithBoehnkeetal.2017, author = {Wang, Sunewang R. and Arrowsmith, Merle and B{\"o}hnke, Julian and Braunschweig, Holger and Dellermann, Theresa and Dewhurst, Rian D. and Kelch, Hauke and Krummenacher, Ivo and Mattock, James D. and M{\"u}ssig, Jonas H. and Thiess, Torsten and Vargas, Alfredo and Zhang, Jiji}, title = {Engineering a Small HOMO-LUMO Gap and Intramolecular B-B Hydroarylation by Diborene/Anthracene Orbital Intercalation}, series = {Angewandte Chemie, International Edition}, volume = {56}, journal = {Angewandte Chemie, International Edition}, number = {27}, doi = {10.1002/anie.201704063}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148126}, pages = {8009-8013}, year = {2017}, abstract = {The diborene 1 was synthesized by reduction of a mixture of 1,2-di-9-anthryl-1,2-dibromodiborane(4) (6) and trimethylphosphine with potassium graphite. The X-ray structure of 1 shows the two anthryl rings to be parallel and their π(C\(_{14}\)) systems perpendicular to the diborene π(B=B) system. This twisted conformation allows for intercalation of the relatively high-lying π(B=B) orbital and the low-lying π* orbital of the anthryl moiety with no significant conjugation, resulting in a small HOMO-LUMO gap (HLG) and ultimately an unprecedented anthryl B-B bond hydroarylation. The HLG of 1 was estimated to be 1.57 eV from the onset of the long wavelength band in its UV-vis absorption spectrum (THF, λ\(_{onset}\) = 788 nm). The oxidation of 1 with elemental selenium afforded diboraselenirane 8 in quantitative yield. By oxidative abstraction of one phosphine ligand by another equivalent of elemental selenium, the B-B and C\(^1\)-H bonds of 8 were cleaved to give the cyclic 1,9-diboraanthracene 9.}, language = {en} } @unpublished{AuerhammerArrowsmithBissingeretal.2017, author = {Auerhammer, Dominic and Arrowsmith, Merle and Bissinger, Philipp and Braunschweig, Holger and Dellermann, Theresa and Kupfer, Thomas and Lenczyk, Carsten and Roy, Dipak and Sch{\"a}fer, Marius and Schneider, Christoph}, title = {Increasing the Reactivity of Diborenes: Derivatization of NHC- Supported Dithienyldiborenes with Electron-Donor Groups}, series = {Chemistry, A European Journal}, journal = {Chemistry, A European Journal}, doi = {10.1002/chem.201704669}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-155419}, year = {2017}, abstract = {A series of NHC-supported 1,2-dithienyldiborenes was synthesized from the corresponding (dihalo)thienylborane NHC precursors. NMR and UV-vis spectroscopic data, as well as X-ray crystallographic analyses, were used to assess the electronic and steric influences on the B=B double bond of various NHCs and electron-donating substituents on the thienyl ligands. Crystallographic data showed that the degree of coplanarity of the diborene core and thienyl groups is highly dependent on the sterics of the substituents. Furthermore, any increase in the electron- donating ability of the substituents resulted in the destabilization of the HOMO and greater instability of the resulting diborenes.}, language = {en} } @unpublished{BoehnkeDellermannCeliketal.2018, author = {B{\"o}hnke, Julian and Dellermann, Theresa and Celik, Mehmet Ali and Krummenacher, Ivo and Dewhurst, Rian D. and Demeshko, Serhiy and Ewing, William C. and Hammond, Kai and Heß, Merlin and Bill, Eckhard and Welz, Eileen and R{\"o}hr, Merle I. S. and Mitric, Roland and Engels, Bernd and Meyer, Franc and Braunschweig, Holger}, title = {Isolation of diradical products of twisted double bonds}, series = {Nature Communications}, journal = {Nature Communications}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-160248}, year = {2018}, abstract = {Molecules containing multiple bonds between atoms—most often in the form of olefins—are ubiquitous in nature, commerce, and science, and as such have a huge impact on everyday life. Given their prominence, over the last few decades, frequent attempts have been made to perturb the structure and reactivity of multiply-bound species through bending and twisting. However, only modest success has been achieved in the quest to completely twist double bonds in order to homolytically cleave the associated π bond. Here, we present the isolation of double-bond-containing species based on boron, as well as their fully twisted diradical congeners, by the incorporation of attached groups with different electronic properties. The compounds comprise a structurally authenticated set of diamagnetic multiply-bound and diradical singly-bound congeners of the same class of compound.}, language = {en} } @unpublished{EnglertStoyArrowsmithetal.2019, author = {Englert, Lukas and Stoy, Andreas and Arrowsmith, Merle and M{\"u}ssig, Jonas H. and Thaler, Melanie and Deißenberger, Andrea and H{\"a}fner, Alena and B{\"o}hnke, Julian and Hupp, Florian and Seufert, Jens and Mies, Jan and Damme, Alexander and Dellermann, Theresa and Hammond, Kai and Kupfer, Thomas and Radacki, Krzysztof and Thiess, Torsten and Braunschweig, Holger}, title = {Stable Lewis Base Adducts of Tetrahalodiboranes: Synthetic Methods and Structural Diversity}, series = {Chemistry - A European Journal}, journal = {Chemistry - A European Journal}, doi = {10.1002/chem.201901437}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-184888}, year = {2019}, abstract = {A series of 22 new bis(phosphine), bis(carbene) and bis(isonitrile) tetrahalodiborane adducts has been synthesized, either by direct adduct formation with highly sensitive B2X4 precursors (X = Cl, Br, I) or by ligand exchange at stable B2X4(SMe2)2 precursors (X = Cl, Br) with labile dimethylsulfide ligands. The isolated compounds have been fully characterized using NMR spectroscopic, (C,H,N)- elemental and, for 20 of these compounds, X-ray crystallographic analysis, revealing an unexpected variation in the bonding motifs. Besides the classical B2X4L2 diborane(6) adducts, some of the more sterically demanding carbene ligands induce a halide displacement leading to the first halide-bridged monocationic diboron species, [B2X3L2]A (A = BCl4, Br, I). Furthermore, low-temperature 1:1 reactions of B2Cl4 with sterically demanding N-heterocyclic carbenes led to the formation of kinetically unstable mono-adducts, one of which was structurally characterized. A comparison of the NMR and structural data of new and literature-known bis-adducts shows several trends pertaining to the nature of the halides and the stereoelectronic properties of the Lewis bases employed.}, language = {en} }