@article{NotzSchmalzingWedekinketal.2020, author = {Notz, Quirin and Schmalzing, Marc and Wedekink, Florian and Schlesinger, Tobias and Gernert, Michael and Herrmann, Johannes and Sorger, Lena and Weismann, Dirk and Schmid, Benedikt and Sitter, Magdalena and Schlegel, Nicolas and Kranke, Peter and Wischhusen, J{\"o}rg and Meybohm, Patrick and Lotz, Christopher}, title = {Pro- and Anti-Inflammatory Responses in Severe COVID-19-Induced Acute Respiratory Distress Syndrome—An Observational Pilot Study}, series = {Frontiers in Immunology}, volume = {11}, journal = {Frontiers in Immunology}, issn = {1664-3224}, doi = {10.3389/fimmu.2020.581338}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-212815}, year = {2020}, abstract = {Objectives The severity of Coronavirus Disease 2019 (COVID-19) is largely determined by the immune response. First studies indicate altered lymphocyte counts and function. However, interactions of pro- and anti-inflammatory mechanisms remain elusive. In the current study we characterized the immune responses in patients suffering from severe COVID-19-induced acute respiratory distress syndrome (ARDS). Methods This was a single-center retrospective study in patients admitted to the intensive care unit (ICU) with confirmed COVID-19 between March 14th and May 28th 2020 (n = 39). Longitudinal data were collected within routine clinical care, including flow-cytometry of lymphocyte subsets, cytokine analysis and growth differentiation factor 15 (GDF-15). Antibody responses against the receptor binding domain (RBD) of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Spike protein were analyzed. Results All patients suffered from severe ARDS, 30.8\% died. Interleukin (IL)-6 was massively elevated at every time-point. The anti-inflammatory cytokine IL-10 was concomitantly upregulated with IL-6. The cellular response was characterized by lymphocytopenia with low counts of CD8+ T cells, natural killer (NK) and na{\"i}ve T helper cells. CD8+ T and NK cells recovered after 8 to 14 days. The B cell system was largely unimpeded. This coincided with a slight increase in anti-SARS-CoV-2-Spike-RBD immunoglobulin (Ig) G and a decrease in anti-SARS-CoV-2-Spike-RBD IgM. GDF-15 levels were elevated throughout ICU treatment. Conclusions Massively elevated levels of IL-6 and a delayed cytotoxic immune defense characterized severe COVID-19-induced ARDS. The B cell response and antibody production were largely unimpeded. No obvious imbalance of pro- and anti-inflammatory mechanisms was observed, with elevated GDF-15 levels suggesting increased tissue resilience.}, language = {en} } @phdthesis{Schmid2020, author = {Schmid, Benedikt}, title = {Molecular Signaling Mechanisms at the µ-Opioid Receptor}, doi = {10.25972/OPUS-17685}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-176850}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {To this day, opioids represent the most effective class of drugs for the treatment of severe pain. On a molecular level, all opioids in use today are agonists at the μ-opioid receptor (μ receptor). The μ receptor is a class A G protein-coupled receptor (GPCR). GPCRs are among the biological structures most frequently targeted by pharmaceuticals. They are membrane bound receptors, which confer their signals into the cell primarily by activating a variety of GTPases called G proteins. In the course of the signaling process, the μ receptor will be phosphorylated by GRKs, increasing its affinity for another entity of signaling proteins called β-arrestins (β-arrs). The binding of a β-arr to the activated μ receptor will end the G protein signal and cause the receptor to be internalized into the cell. Past research showed that the μ receptor's G protein signal puts into effect the desired pain relieving properties of opioid drugs, whereas β-arr recruitment is more often linked to adverse effects like obstipation, tolerance, and respiratory depression. Recent work in academic and industrial research picked up on these findings and looked into the possibility of enhancing G protein signaling while suppressing β-arr recruitment. The conceptual groundwork of such approaches is the phenomenon of biased agonism. It appreciates the fact that different ligands can change the relative contribution of any given pathway to the overall downstream signaling, thus enabling not only receptor-specific but even pathway-specific signaling. This work examined the ability of a variety of common opioid drugs to specifically activate the different signaling pathways and quantify it by means of resonance energy transfer and protein complementation experiments in living cells. Phosphorylation of the activated receptor is a central step in the canonical GPCR signaling process. Therefore, in a second step, expression levels of the phosphorylating GRKs were enhanced in search for possible effects on receptor signaling and ligand bias. In short, detailed pharmacological profiles of 17 opioid ligands were recorded. Comparison with known clinical properties of the compounds showed robust correlation of G protein activation efficacy and analgesic potency. Ligand bias (i.e. significant preference of any path- way over another by a given agonist) was found for a number of opioids in native HEK293 cells overexpressing μ receptor and β-arrs. Furthermore, overexpression of GRK2 was shown to fundamentally change β-arr pharmacodynamics of nearly all opioids. As a consequence, any ligand bias as detected earlier was abolished with GRK2 overexpression, with the exception of buprenorhin. In summary, the following key findings stand out: (1) Common opioid drugs exert biased agonism at the μ receptor to a small extent. (2) Ligand bias is influenced by expression levels of GRK2, which may vary between individuals, target tissues or even over time. (3) One of the opioids, buprenorhin, did not change its signaling properties with the overexpression of GRK2. This might serve as a starting point for the development of new opioids which could lack the ability of β-arr recruitment altogether and thus might help reduce adverse side effects in the treatment of severe pain.}, subject = {Opiatrezeptor}, language = {en} } @article{HerrmannAdamNotzetal.2020, author = {Herrmann, Johannes and Adam, Elisabeth Hannah and Notz, Quirin and Helmer, Philipp and Sonntagbauer, Michael and Ungemach-Papenberg, Peter and Sanns, Andreas and Zausig, York and Steinfeldt, Thorsten and Torje, Iuliu and Schmid, Benedikt and Schlesinger, Tobias and Rolfes, Caroline and Reyher, Christian and Kredel, Markus and Stumpner, Jan and Brack, Alexander and Wurmb, Thomas and Gill-Schuster, Daniel and Kranke, Peter and Weismann, Dirk and Klinker, Hartwig and Heuschmann, Peter and R{\"u}cker, Viktoria and Frantz, Stefan and Ertl, Georg and Muellenbach, Ralf Michael and Mutlak, Haitham and Meybohm, Patrick and Zacharowski, Kai and Lotz, Christopher}, title = {COVID-19 Induced Acute Respiratory Distress Syndrome — A Multicenter Observational Study}, series = {Frontiers in Medicine}, volume = {7}, journal = {Frontiers in Medicine}, issn = {2296-858X}, doi = {10.3389/fmed.2020.599533}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-219834}, year = {2020}, abstract = {Background: Proportions of patients dying from the coronavirus disease-19 (COVID-19) vary between different countries. We report the characteristics; clinical course and outcome of patients requiring intensive care due to COVID-19 induced acute respiratory distress syndrome (ARDS). Methods: This is a retrospective, observational multicentre study in five German secondary or tertiary care hospitals. All patients consecutively admitted to the intensive care unit (ICU) in any of the participating hospitals between March 12 and May 4, 2020 with a COVID-19 induced ARDS were included. Results: A total of 106 ICU patients were treated for COVID-19 induced ARDS, whereas severe ARDS was present in the majority of cases. Survival of ICU treatment was 65.0\%. Median duration of ICU treatment was 11 days; median duration of mechanical ventilation was 9 days. The majority of ICU treated patients (75.5\%) did not receive any antiviral or anti-inflammatory therapies. Venovenous (vv) ECMO was utilized in 16.3\%. ICU triage with population-level decision making was not necessary at any time. Univariate analysis associated older age, diabetes mellitus or a higher SOFA score on admission with non-survival during ICU stay. Conclusions: A high level of care adhering to standard ARDS treatments lead to a good outcome in critically ill COVID-19 patients.}, language = {en} } @article{SchlesingerWeissbrichWedekinketal.2020, author = {Schlesinger, Tobias and Weißbrich, Benedikt and Wedekink, Florian and Notz, Quirin and Herrmann, Johannes and Krone, Manuel and Sitter, Magdalena and Schmid, Benedikt and Kredel, Markus and Stumpner, Jan and D{\"o}lken, Lars and Wischhusen, J{\"o}rg and Kranke, Peter and Meybohm, Patrick and Lotz, Christpher}, title = {Biodistribution and serologic response in SARS-CoV-2 induced ARDS: A cohort study}, series = {PLoS One}, volume = {15, 2020}, journal = {PLoS One}, number = {11}, doi = {10.1371/journal.pone.0242917}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-231348}, year = {2020}, abstract = {Background The viral load and tissue distribution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remain important questions. The current study investigated SARS-CoV-2 viral load, biodistribution and anti-SARS-CoV-2 antibody formation in patients suffering from severe corona virus disease 2019 (COVID-19) induced acute respiratory distress syndrome (ARDS). Methods This is a retrospective single-center study in 23 patients with COVID-19-induced ARDS. Data were collected within routine intensive care. SARS-CoV-2 viral load was assessed via reverse transcription quantitative polymerase chain reaction (RT-qPCR). Overall, 478 virology samples were taken. Anti-SARS-CoV-2-Spike-receptor binding domain (RBD) antibody detection of blood samples was performed with an enzyme-linked immunosorbent assay. Results Most patients (91\%) suffered from severe ARDS during ICU treatment with a 30-day mortality of 30\%. None of the patients received antiviral treatment. Tracheal aspirates tested positive for SARS-CoV-2 in 100\% of the cases, oropharyngeal swabs only in 77\%. Blood samples were positive in 26\% of the patients. No difference of viral load was found in tracheal or blood samples with regard to 30-day survival or disease severity. SARS-CoV-2 was never found in dialysate. Serologic testing revealed significantly lower concentrations of SARS-CoV-2 neutralizing IgM and IgA antibodies in survivors compared to non-survivors (p = 0.009). Conclusions COVID-19 induced ARDS is accompanied by a high viral load of SARS-CoV-2 in tracheal aspirates, which remained detectable in the majority throughout intensive care treatment. Remarkably, SARS-CoV-2 RNA was never detected in dialysate even in patients with RNAemia. Viral load or the buildup of neutralizing antibodies was not associated with 30-day survival or disease severity.}, language = {en} }