@phdthesis{Mann2015, author = {Mann, Christoph}, title = {Exzitonengr{\"o}ße und -dynamik in (6,5)-Kohlenstoffnanor{\"o}hren : Transiente Absorptions- und Photolumineszenzmessungen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-116712}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Zahlreiche theoretische und experimentelle Untersuchungen haben erwiesen, dass in halbleitenden Kohlenstoffnanor{\"o}hren durch Absorption von Licht haupts{\"a}chlich Exzitonen erzeugt werden. Die photophysikalischen Eigenschaften und insbesondere die Prozesse nach der optischen Anregung sind aber gegenw{\"a}rtig noch nicht vollst{\"a}ndig verstanden. Zeitaufgel{\"o}ste Spektroskopie bietet die M{\"o}glichkeit, diese Prozesse zu verfolgen und somit detaillierten Einblick in das photophysikalische Verhalten von Kohlenstoffnanor{\"o}hren zu nehmen. Hierbei scheinen auch extrinsische Faktoren - zu nennen sind die Herstellungsmethode, die Art der Probenpr{\"a}paration, der Aggregationsgrad sowie der durch das L{\"o}sungs- bzw. Dispersionsmittel bedingte Einfluss - eine entscheidende Rolle zu spielen. In dieser Dissertation wurden die Exzitonengr{\"o}ße sowie die exzitonische Dynamik in einwandigen Kohlenstoffnanor{\"o}hren mittels transienter Absorptionsspektroskopie sowie station{\"a}rer und zeitaufgel{\"o}ster Photolumineszenzmessungen untersucht. Alle Experimente fanden dabei an halbleitenden (6,5)-Kohlenstoffnanor{\"o}hren statt, deren chirale Anreicherung durch Dichtegradientenultrazentrifugation gelang. F{\"u}r die temperaturabh{\"a}ngigen Messungen wurde ein Verfahren zur Herstellung von tensidstabilisierten Gelatinefilmen entwickelt. Diese zeichnen sich durch eine hohe Temperaturstabilit{\"a}t bei gleichzeitiger Minimierung von Streulichteffekten aus. Die Bestimmung der Exzitonengr{\"o}ße erfolgte mit Hilfe des Phasenraumf{\"u}llmodells, das die intensit{\"a}tsabh{\"a}ngige {\"A}nderung der Oszillatorst{\"a}rke eines {\"U}bergangs mit der Exzitonengr{\"o}ße verkn{\"u}pft. Hierf{\"u}r wurden leistungsabh{\"a}ngige Messungen der transienten Absorption durchgef{\"u}hrt und die Signalintensit{\"a}t des Photobleichens gegen die absorbierte Photonenflussdichte aufgetragen. Da diese beiden Gr{\"o}ßen nur bei geringer Exzitonendichte in einer linearen Beziehung stehen, aus der sich die Exzitonengr{\"o}ße berechnen l{\"a}sst, wurde im Experiment besonderer Wert auf niedrige Anregungsfluenzen und deren exakte Bestimmung gelegt. Um den Einfluss der Aggregation quantifizieren zu k{\"o}nnen und den Vergleich mit der Literatur zu erleichtern, fanden die Untersuchungen sowohl an individualisierten als auch an aggregierten R{\"o}hrenproben statt. Die Datenanalyse, bei der erstmalig die stimulierte Emission sowie der spektrale {\"U}berlapp von Photoabsorptions- und Photobleichbande Ber{\"u}cksichtigung fanden, ergab f{\"u}r individualisierte (6,5)-Nanor{\"o}hren einen Wert von 12.0 nm f{\"u}r die Gr{\"o}ße des S1-Exzitons, w{\"a}hrend diese bei der aggregierten R{\"o}hrenprobe nur 5.6 nm betr{\"a}gt. Die Probenabh{\"a}ngigkeit der Exzitonengr{\"o}ße macht den Vergleich mit anderen experimentell ermittelten Werten schwierig. Diese liegen fast ausschließlich zwischen 1 nm und 4.5 nm, ihre Bestimmung fand aber teilweise an stark aggregierten bzw. polydispersen Proben statt. Theoretische Berechnungen liefern f{\"u}r die Exzitonengr{\"o}ße Werte zwischen 1 nm und 4 nm. Zwar gelten einige der Berechnungen f{\"u}r Vakuum, was verglichen zu einer experimentell in L{\"o}sung bzw. im Film bestimmten Exzitonengr{\"o}ße einen kleineren Wert mit sich bringt, jedoch kann allein hierdurch die Diskrepanz zu der in dieser Arbeit ermittelten Exzitonengr{\"o}ße von 12.0 nm nicht erkl{\"a}rt werden. Setzt man experimentell und theoretisch f{\"u}r Vakuum bestimmte Werte f{\"u}r die Exzitonengr{\"o}ße und die Bindungsenergie in einen einfachen Zusammenhang, entspricht eine Exzitonengr{\"o}ße von 12.0 nm einer Bindungsenergie zwischen 0.21 eV und 0.27 eV. Die mittels Zweiphotonenexperimenten ermittelten Werte f{\"u}r die Bindungsenergie von (6,5)-Kohlenstoffnanor{\"o}hren befinden sich zwischen 0.37 eV und 0.42 eV; diese wurden allerdings unter Zuhilfenahme eines vereinfachten zylindrischen Modells abgesch{\"a}tzt. Weitere experimentelle und theoretische Untersuchungen k{\"o}nnten kl{\"a}ren, inwieweit eine exzitonische Bindungsenergie zwischen 0.21 eV und 0.27 eV f{\"u}r (6,5)-SWNTs in Betracht kommt. Strahlender und nichtstrahlender Zerfall in den Grundzustand scheinen in (6,5)-Kohlenstoffnanor{\"o}hren durch eine Dynamik zwischen verschiedenen Zust{\"a}nden sowie durch die Diffusion der Exzitonen beeinflusst zu werden. Um diese f{\"u}r die Rekombination maßgeblichen Prozesse besser zu verstehen, wurden temperaturabh{\"a}ngige Messungen der station{\"a}ren und zeitaufgel{\"o}sten Photolumineszenz sowie der transienten Absorption durchgef{\"u}hrt. Die Ergebnisse der station{\"a}ren PL-Experimente deuten darauf hin, dass die Exzitonen zwischen dem optisch aktiven Singulettzustand mit A2-Symmetrie - im Folgenden mit [B] bezeichnet - und einem energetisch tiefer liegenden dunklen Zustand [D] gestreut werden. Mit einem Wert von 5 meV f{\"u}r die energetische Aufspaltung zwischen [B] und [D] gelingt eine gute Anpassung an die Daten, was mit Blick auf die Bandstruktur von (6,5)-SWNTs vermuten l{\"a}sst, dass es sich bei [D] um den A1-Singulettzustand handelt. Außerdem scheint eine nichtthermische Verteilung der Exzitonen auf [B] und [D] vorzuliegen, wobei strahlende Rekombination nur vom Zustand [B] aus m{\"o}glich ist. Mit diesen Annahmen kann das temperaturabh{\"a}ngige Verhalten der station{\"a}ren Photolumineszenz modelliert werden, die Ergebnisse der zeitaufgel{\"o}sten PL-Messungen jedoch nicht. Mit einem rein diffusionsdominierten Modell gelingt dies ebenso wenig, so dass zur Interpretation des PL-Zerfalls vermutlich ein Modell entwickelt werden muss, in dem sowohl die Streuung der Exzitonen zwischen [B] und [D] als auch das durch Diffusion bedingte L{\"o}schen an Defektstellen oder R{\"o}hrenenden Ber{\"u}cksichtigung findet. Die Bedeutung der Diffusion von Exzitonen zu Defektstellen oder R{\"o}hrenenden, an denen bevorzugt nichtstrahlender Zerfall stattfindet, kann durch spektral- und zeitaufgel{\"o}ste PL-Messungen belegt werden. Abh{\"a}ngig von der zur Verf{\"u}gung stehenden thermischen Energie und der H{\"o}he der Potenzialbarrieren des untersuchten Systems kann die Diffusion niederenergetischer Exzitonen, die sich in Potenzialminima befinden, soweit eingeschr{\"a}nkt werden, dass diese eine fast bis um den Faktor zwei l{\"a}ngere PL-Lebensdauer aufweisen als h{\"o}herenergetische Exzitonen. Das unterschiedliche Verhalten von transienter Absorption und zeitaufgel{\"o}ster Photolumineszenz bei Temperaturen zwischen 14 K und 35 K zeigt, dass die Repopulation des Grundzustands haupts{\"a}chlich von einem anderen Zustand aus erfolgt als die strahlende Rekombination. Ob es sich hierbei aber um den mit [D] bezeichneten A1-Singulettzustand oder einen anderen dunklen Zustand handelt, kann nicht abschließend gekl{\"a}rt werden. Aufgrund inhomogener Verbreiterung stellt die Halbwertsbreite der Banden im Absorptionsspektrum ein Maß f{\"u}r die H{\"o}he der Potenzialbarrieren bzw. f{\"u}r die energetische Verteilung der Exzitonen im angeregten Zustand dar. In dieser Arbeit wurde anhand vier verschiedener Nanorohrsuspensionen gezeigt, dass S{\"a}ttigungsverhalten der transienten Absorption von (6,5)-Kohlenstoffnanor{\"o}hren und Bandenbreite im Absorptionsspektrum demselben Trend folgen. Begr{\"u}nden kann man dies damit, dass das S{\"a}ttigungsverhalten der transienten Absorption durch Exziton-Exziton-Annihilation bestimmt wird. Aufgrund ihrer eindimensionalen Struktur unterliegen Kohlenstoffnanor{\"o}hren einer starken Beeinflussung durch die Umgebung. Abh{\"a}ngig vom L{\"o}sungs- bzw. Dispersionsmittel resultiert eine unterschiedliche inhomogene Verbreiterung der Absorptionsbanden und damit unterschiedlich hohe Potenzialbarrieren im angeregten Zustand. Niedrige Potenzialbarrieren erlauben eine weitreichende Diffusion der Exzitonen, sodass effiziente Exziton-Exziton-Annihilation schon bei einer vergleichsweise geringen Exzitonendichte stattfindet und das Signal der transienten Absorption bei einer niedrigen Impulsfluenz s{\"a}ttigt.}, subject = {Exziton}, language = {de} }