@phdthesis{Dinev2001, author = {Dinev, Dragomir}, title = {Analysis of the role of extracellular signal regulated kinase (ERK5) in the differentiation of muscle cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-1180481}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2001}, abstract = {The MEK5/ ERK5 kinase module is a relatively new discovered mitogen-activated protein kinase (MAPK) signalling pathway with a poorly defined physiological function. Since ERK5 and its upstream activator MEK5 are abundant in skeletal muscle a function of the cascade during muscle differentiation was examined. ERK5 becomes activated upon induction of differentiation in mouse myoblasts. The selective activation of the pathway results in promoter activation of differentiation-specific genes, such as the cdk-inhibitor p21 gene, the myosin light chain (MLC1A) gene, or an E-box containing promoter element, where myogenic basic-helix-loop-helix proteins such as MyoD or myogenin bind. Moreover, myogenic differentiation is completely blocked, when ERK5 expression is inhibited by antisense RNA. The effect can be detected also on the expression level of myogenic determination and differentiation markers such as p21, MyoD and myogenin. Another new finding is that stable expression of ERK5 in C2C12 leads to differentiation like phenotype and to increased p21 expression levels under growth conditions. These results provide first evidence that the MEK5/ERK5 MAP kinase cascade is critical for early steps of muscle cell differentiation.}, subject = {Muskelzelle}, language = {en} } @phdthesis{Menzel2007, author = {Menzel, Nicolas}, title = {Molekulare Analyse der zellul{\"a}ren Funktionen der p21-aktivierten Kinase Mushroom bodies tiny von Drosophila melanogaster}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-23727}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {In Drosophila melanogaster wurde der p21-aktivierten Proteinkinase Mushroom bodies tiny (Mbt) eine wichtige Rolle als Regulator w{\"a}hrend der Differenzierung von Photorezeptorzellen zugeschrieben. Da morphologische Umgestaltungsprozesse der Photorezeptorzellen von dynamischen Zellbewegungen begleitet und die molekularen Details gr{\"o}ßtenteils noch ungekl{\"a}rt sind, wurden in dieser Arbeit die Funktionen von Mbt in Bezug auf ver{\"a}nderte Zelladh{\"a}sionseigenschaften, Reorganisation des Aktincytoskeletts und die Beteiligung an weiteren Signalwegen analysiert. Im ersten Projekt wurde ein genetischer Interaktionsscreen mit Hilfe eines hypomorphen mbt- Allels (mbtP3) durchgef{\"u}hrt, um zu untersuchen, in welche zellul{\"a}ren Signalwege Mbt einzuordnen ist. Die Identifizierung des Aktin-Depolymerisationsfaktor Cofilin (Drosophila: Twinstar) und der Phosphatase Slingshot best{\"a}tigte, daß Mbt in Prozesse involviert ist, die die Aktindynamik kontrollieren. In Vertebraten phosphoryliert und inaktiviert die Proteinkinase Pak4 (Drosophila Homolog zu Mbt) die Lim-Kinase (Limk), die wiederum Cofilin durch Phosphorylierung hemmt. Dieser Effekt kann nach Dephosphorylierung des Cofilin durch die Phosphatase Slingshot wieder aufgehoben werden. In Drosophila konnte gezeigt werden, daß aktiviertes Mbt mit Twinstar und Drosophila Limk (D-Limk) assoziiert ist und die Phosphorylierungen beider Molek{\"u}le induzieren kann. Zusammen mit genetischen Experimenten stellen die Ergebnisse entgegen der Situation in Vertebraten die Funktion von D-Limk als Vermittler zwischen Mbt und Twinstar in Frage und lassen vielmehr auf einen Verlauf des Signals von Mbt direkt an Twinstar, {\"u}ber Slingshot oder unbekannte Kinasen schließen. Ein zweites Projekt besch{\"a}ftigte sich mit dem Einfluß von Mbt auf die DE-Cadherin-beta- Catenin/Armadillo vermittelte Zelladh{\"a}sion. Dazu wurde ein Zellkultursystem in Drosophila Schneiderzellen etabliert, welches es erlaubte, den DE-Cadherin-beta-Catenin/Armadillo-alpha- Catenin Komplex vollst{\"a}ndig zu rekonstituieren. Die Resultate zeigten, daß Mbt mit dem Komplex interagiert und beta-Catenin/Armadillo an den Aminos{\"a}uren S561 und S688 phosphoryliert. Die Phosphorylierung bewirkt eine Destabilisierung der Bindung zwischen DE-Cadherin und beta- Catenin/Armadillo und vermindert die Adh{\"a}sion der Zellkontakte zwischen Zellen. Im dritten Projekt ging es um die Suche nach unbekannten Phosphorylierungspartnern und der Integration von Mbt in weitere Signalwege. Dazu wurde eine stringente, radioaktive in vitro Phosphorylierungsreaktion entwickelt, die die Detektion von Mbt-spezifischen Phosphorylierungssubstraten aus einem Extrakt von Drosophila Schneiderzellen erm{\"o}glichte. In einer Vorstufe wurde dieses Extrakt mit dem ATP-Analogon 5'-Fluorosulfonylbenzoyladenosin (5'FSBA) vorbehandelt, um s{\"a}mtliche endogenen Kinasen irreversibel zu inhibieren und die nachfolgende Phosphorylierungsreaktion mit aufgereinigtem Mbt spezifisch f{\"u}r Mbt zu machen. Nach Auftrennung und Identifizierung der potentiellen Phosphoproteine durch Massenspektrometrie wurde das Drosophila Dynamitin als neuer Interaktions- und Phosphorylierungspartner von Mbt gefunden.}, language = {de} } @article{ZanuccoGoetzPotapenkoetal.2011, author = {Zanucco, Emanuele and G{\"o}tz, Rudolf and Potapenko, Tamara and Carraretto, Irene and Ceteci, Semra and Ceteci, Fatih and Seeger, Werner and Savai, Rajkumar and Rapp, Ulf R.}, title = {Expression of B-RAF V600E in Type II Pneumocytes Causes Abnormalities in Alveolar Formation, Airspace Enlargement and Tumor Formation in Mice}, series = {PLOS ONE}, volume = {6}, journal = {PLOS ONE}, number = {12}, doi = {10.1371/journal.pone.0029093}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-137061}, pages = {e29093}, year = {2011}, abstract = {Growth factor induced signaling cascades are key regulatory elements in tissue development, maintenance and regeneration. Perturbations of these cascades have severe consequences, leading to developmental disorders and neoplastic diseases. As a major function in signal transduction, activating mutations in RAF family kinases are the cause of human tumorigenesis, where B-RAF V600E has been identified as the prevalent mutant. In order to address the oncogenic function of B-RAF V600E, we have generated transgenic mice expressing the activated oncogene specifically in lung alveolar epithelial type II cells. Constitutive expression of B-RAF V600E caused abnormalities in alveolar epithelium formation that led to airspace enlargements. These lung lesions showed signs of tissue remodeling and were often associated with chronic inflammation and low incidence of lung tumors. The inflammatory cell infiltration did not precede the formation of the lung lesions but was rather accompanied with late tumor development. These data support a model where the continuous regenerative process initiated by oncogenic B-RAF-driven alveolar disruption provides a tumor-promoting environment associated with chronic inflammation.}, language = {en} } @article{RonchiLeichSbieraetal.2012, author = {Ronchi, Cristina L. and Leich, Ellen and Sbiera, Silviu and Weismann, Dirk and Rosenwald, Andreas and Allolio, Bruno and Fassnacht, Martin}, title = {Single Nucleotide Polymorphism Microarray Analysis in Cortisol-Secreting Adrenocortical Adenomas Identifies New Candidate Genes and Pathways}, series = {Neoplasia}, volume = {14}, journal = {Neoplasia}, number = {3}, doi = {10.1593/neo.111758}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-134953}, pages = {206}, year = {2012}, abstract = {The genetic mechanisms underlying adrenocortical tumor development are still largely unknown. We used high-resolution single nucleotide polymorphism microarrays (Affymetrix SNP 6.0) to detect copy number alterations (CNAs) and copy-neutral losses of heterozygosity (cnLOH) in 15 cortisol-secreting adrenocortical adenomas with matched blood samples. We focused on microalterations aiming to discover new candidate genes involved in early tumorigenesis and/or autonomous cortisol secretion. We identified 962 CNAs with a median of 18 CNAs per sample. Half of them involved noncoding regions, 89\% were less than 100 kb, and 28\% were found in at least two samples. The most frequently gained regions were 5p15.33, 6q16.1, 7p22.3-22.2, 8q24.3, 9q34.2-34.3, 11p15.5, 11q11, 12q12, 16q24.3, 20p11.1-20q21.11, and Xq28 (>= 20\% of cases), most of them being identified in the same three adenomas. These regions contained among others genes like NOTCH1, CYP11B2, HRAS, and IGF2. Recurrent losses were less common and smaller than gains, being mostly localized at 1p, 6q, and 11q. Pathway analysis revealed that Notch signaling was the most frequently altered. We identified 46 recurrent CNAs that each affected a single gene (31 gains and 15 losses), including genes involved in steroidogenesis (CYP11B1) or tumorigenesis (CTNNB1, EPHA7, SGK1, STIL, FHIT). Finally, 20 small cnLOH in four cases affecting 15 known genes were found. Our findings provide the first high-resolution genome-wide view of chromosomal changes in cortisol-secreting adenomas and identify novel candidate genes, such as HRAS, EPHA7, and SGK1. Furthermore, they implicate that the Notch1 signaling pathway might be involved in the molecular pathogenesis of adrenocortical tumors.}, language = {en} } @article{HavikDegenhardtJohanssonetal.2012, author = {Havik, Bjarte and Degenhardt, Franziska A. and Johansson, Stefan and Fernandes, Carla P. D. and Hinney, Anke and Scherag, Andr{\´e} and Lybaek, Helle and Djurovic, Srdjan and Christoforou, Andrea and Ersland, Kari M. and Giddaluru, Sudheer and O'Donovan, Michael C. and Owen, Michael J. and Craddock, Nick and M{\"u}hleisen, Thomas W. and Mattheisen, Manuel and Schimmelmann, Benno G. and Renner, Tobias and Warnke, Andreas and Herpertz-Dahlmann, Beate and Sinzig, Judith and Albayrak, {\"O}zg{\"u}r and Rietschel, Marcella and N{\"o}then, Markus M. and Bramham, Clive R. and Werge, Thomas and Hebebrand, Johannes and Haavik, Jan and Andreassen, Ole A. and Cichon, Sven and Steen, Vidar M. and Le Hellard, Stephanie}, title = {DCLK1 Variants Are Associated across Schizophrenia and Attention Deficit/Hyperactivity Disorder}, series = {PLoS One}, volume = {7}, journal = {PLoS One}, number = {4}, doi = {10.1371/journal.pone.0035424}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-135285}, pages = {e35424}, year = {2012}, abstract = {Doublecortin and calmodulin like kinase 1 (DCLK1) is implicated in synaptic plasticity and neurodevelopment. Genetic variants in DCLK1 are associated with cognitive traits, specifically verbal memory and general cognition. We investigated the role of DCLK1 variants in three psychiatric disorders that have neuro-cognitive dysfunctions: schizophrenia (SCZ), bipolar affective disorder (BP) and attention deficit/hyperactivity disorder (ADHD). We mined six genome wide association studies (GWASs) that were available publically or through collaboration; three for BP, two for SCZ and one for ADHD. We also genotyped the DCLK1 region in additional samples of cases with SCZ, BP or ADHD and controls that had not been whole-genome typed. In total, 9895 subjects were analysed, including 5308 normal controls and 4,587 patients (1,125 with SCZ, 2,496 with BP and 966 with ADHD). Several DCLK1 variants were associated with disease phenotypes in the different samples. The main effect was observed for rs7989807 in intron 3, which was strongly associated with SCZ alone and even more so when cases with SCZ and ADHD were combined (P-value = 4x10\(^{-5}\) and 4x10\(^{-6}\), respectively). Associations were also observed with additional markers in intron 3 (combination of SCZ, ADHD and BP), intron 19 (SCZ+BP) and the 3'UTR (SCZ+BP). Our results suggest that genetic variants in DCLK1 are associated with SCZ and, to a lesser extent, with ADHD and BP. Interestingly the association is strongest when SCZ and ADHD are considered together, suggesting common genetic susceptibility. Given that DCLK1 variants were previously found to be associated with cognitive traits, these results are consistent with the role of DCLK1 in neurodevelopment and synaptic plasticity.}, language = {en} } @phdthesis{Mottola2021, author = {Mottola, Austin}, title = {Molecular characterization of the SNF1 signaling pathway in \(Candida\) \(albicans\)}, doi = {10.25972/OPUS-23809}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-238098}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The fungus Candida albicans is a typical member of the human microbiota, where it usually behaves as a commensal. It can also become pathogenic; often causing minor superficial infections in healthy people, but also potentially fatal invasive systemic infections in immunocompromised people. Unfortunately, there is only a fairly limited set of antifungal drugs, and evolution of drug resistance threatens their efficacy. Greater understanding of the mechanisms that C. albicans uses to survive in and infect the host can uncover candidate targets for novel antifungals. Protein kinases are central to a vast array of signalling pathways which govern practically all aspects of life, and furthermore are relatively straightforward to design drugs against. As such, investigation and characterization of protein kinases in C. albicans as well as their target proteins and the pathways they govern are important targets for research. AMP-activated kinases are well conserved proteins which respond to energy stress; they are represented in yeasts by the heterotrimeric SNF1 complex, which responds primarily to the absence of glucose. In this work, the SNF1 pathway was investigated with two primary goals: identify novel targets of this protein kinase and elucidate why SNF1 is essential. Two approaches were used to identify novel targets of SNF1. In one, suppressor mutants were evolved from a strain in which SNF1 activity is reduced, which exhibits defects in carbon source utilization and cell wall integrity. This revealed a suppressor mutation within SNF1 itself, coding for the catalytic subunit of the complex - SNF1Δ311-316. The second approach screened a library of artificially activated zinc cluster transcription factors, identifying Czf1 as one such transcription factor which, upon artificial activation, restored resistance to cell wall stress in a mutant of the SNF1 pathway. Finally, a, inducible gene deletion system revealed that SNF1 is not an essential gene.}, subject = {candida albicans}, language = {en} } @phdthesis{Koike2023, author = {Koike, Akito}, title = {Molekular und zellbiologischer Ansatz hin zu neuartigen Medikamenten gegen \(Echinococcus\) \(multilocularis\)}, doi = {10.25972/OPUS-28864}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-288649}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Echinococcosis is an important zoonosis. The causative agent of Alveolar Echinococcosis (AE) is Echinococcus multilocularis. The treatment of human AE is limited to surgery and chemotherapy with albendazole (ABZ). However, ABZ works only parasitostatically and it needs to be taken for long periods, although it causes adverse side effects. Thus, development of new, parasiticidal drug with selective toxicity is required. Because undifferentiated stem cells of E. multilocularis play key role in its longevity and regenerative capacity, targeting stem cells is especially important. In vitro screening of protein kinases inhibitors demonstrated that human PIM kinases inhibitors have detrimental effects on E. multilocularis. Through yeast two hybrid assay, the interaction of parasite PIM kinase (EmPIM) and its CDC25 (EmCDC25) was indicated. Through in situ hybridization, expression of EmPIM in the stem cells was observed. Therefore, EmPim is likely to be a positive regulator of cell cycle progression, the same as human Pim1. In addition, 20 compounds against EmPIM were selected through in silico screening and synthesized. One of them has a detrimental effect on E.multilocularis comparable to human pan-PIM inhibitors, but has much weaker toxicity on human cell lines. Furthermore, triclabendazole (TCBZ) and its metabolite TCBZSX, which are approved for another flatworm disease, Fascioliasis were tried on E. multilocularis. With two stem cell markers, damage to stem cells by TCBZSX was shown. In addition, primary cells from treated vesicles never regenerated and the damage to stem cells proved to be irreversible. Our in silico screening method used in EmPIM research has potential to identify compounds which overcome the side effect problem in ABZ-based chemotherapy. On the other hand, it is expected that my research of TCBZ can lead to development of a practical parasiticidal chemotherapy by combining TCBZ, which damages stem cells, and ABZ, which damages differentiated cells.}, subject = {Bandw{\"u}rmer}, language = {en} }