@article{OehlerKistnerMartinetal.2017, author = {Oehler, Beatrice and Kistner, Katrin and Martin, Corinna and Schiller, J{\"u}rgen and Mayer, Rafaela and Mohammadi, Milad and Sauer, Reine-Solange and Filipovic, Milos R. and Nieto, Francisco R. and Kloka, Jan and Pfl{\"u}cke, Diana and Hill, Kerstin and Schaefer, Michael and Malcangio, Marzia and Reeh, Peter W. and Brack, Alexander and Blum, Robert and Rittner, Heike L.}, title = {Inflammatory pain control by blocking oxidized phospholipid-mediated TRP channel activation}, series = {Scientific Reports}, volume = {7}, journal = {Scientific Reports}, number = {5447}, doi = {10.1038/s41598-017-05348-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158536}, year = {2017}, abstract = {Phospholipids occurring in cell membranes and lipoproteins are converted into oxidized phospholipids (OxPL) by oxidative stress promoting atherosclerotic plaque formation. Here, OxPL were characterized as novel targets in acute and chronic inflammatory pain. Oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (OxPAPC) and its derivatives were identified in inflamed tissue by mass spectrometry and binding assays. They elicited calcium influx, hyperalgesia and induced pro-nociceptive peptide release. Genetic, pharmacological and mass spectrometric evidence in vivo as well as in vitro confirmed the role of transient receptor potential channels (TRPA1 and TRPV1) as OxPAPC targets. Treatment with the monoclonal antibody E06 or with apolipoprotein A-I mimetic peptide D-4F, capturing OxPAPC in atherosclerosis, prevented inflammatory hyperalgesia, and in vitro TRPA1 activation. Administration of D-4F or E06 to rats profoundly ameliorated mechanical hyperalgesia and inflammation in collagen-induced arthritis. These data reveal a clinically relevant role for OxPAPC in inflammation offering therapy for acute and chronic inflammatory pain treatment by scavenging OxPAPC.}, language = {en} } @article{OehlerKlokaMohammadietal.2020, author = {Oehler, Beatrice and Kloka, Jan and Mohammadi, Milad and Ben-Kraiem, Adel and Rittner, Heike L.}, title = {D-4F, an ApoA-I mimetic peptide ameliorating TRPA1-mediated nocifensive behaviour in a model of neurogenic inflammation}, series = {Molecular Pain}, volume = {16}, journal = {Molecular Pain}, doi = {10.1177/1744806920903848}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-236061}, pages = {1-11}, year = {2020}, abstract = {Background High doses of capsaicin are recommended for the treatment of neuropathic pain. However, low doses evoke mechanical hypersensitivity. Activation of the capsaicin chemosensor transient receptor potential vanilloid 1 (TRPV1) induces neurogenic inflammation. In addition to the release of pro-inflammatory mediators, reactive oxygen species are produced. These highly reactive molecules generate oxidised phospholipids and 4-hydroxynonenal (4-HNE) which then directly activate TRP ankyrin 1 (TRPA1). The apolipoprotein A-I mimetic peptide D-4F neutralises oxidised phospholipids. Here, we asked whether D-4F ameliorates neurogenic hypersensitivity in rodents by targeting reactive oxygen species and 4-HNE in the capsaicin-evoked pain model. Results Co-application of D-4F ameliorated capsaicin-induced mechanical hypersensitivity and allodynia as well as persistent heat hypersensitivity measured by Randell-Selitto, von Frey and Hargreaves test, respectively. In addition, mechanical hypersensitivity was blocked after co-injection of D-4F with the reactive oxygen species analogue H2O2 or 4-HNE. In vitro studies on dorsal root ganglion neurons and stably transfected cell lines revealed a TRPA1-dependent inhibition of the calcium influx when agonists were pre-incubated with D-4F. The capsaicin-induced calcium influx in TRPV1-expressing cell lines and dorsal root ganglion neurons sustained in the presence of D-4F. Conclusions D-4F is a promising compound to ameliorate TRPA1-dependent hypersensitivity during neurogenic inflammation.}, language = {en} }