@article{DeaconWiedenmannBocquillonetal.2017, author = {Deacon, R. S. and Wiedenmann, J. and Bocquillon, E. and Dom{\´i}nguez, F. and Klapwijk, T. M. and Leubner, P. and Br{\"u}ne, C. and Hankiewicz, E. M. and Tarucha, S. and Ishibashi, K. and Buhmann, H. and Molenkamp, L. W.}, title = {Josephson Radiation from Gapless Andreev Bound States in HgTe-Based Topological Junctions}, series = {Physical Review X}, volume = {7}, journal = {Physical Review X}, number = {021011}, doi = {10.1103/PhysRevX.7.021011}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170969}, year = {2017}, abstract = {Frequency analysis of the rf emission of oscillating Josephson supercurrent is a powerful passive way of probing properties of topological Josephson junctions. In particular, measurements of the Josephson emission enable the detection of topological gapless Andreev bound states that give rise to emission at half the Josephson frequency f\(_{J}\) rather than conventional emission at f\(_{J}\). Here, we report direct measurement of rf emission spectra on Josephson junctions made of HgTe-based gate-tunable topological weak links. The emission spectra exhibit a clear signal at half the Josephson frequency f\(_{J}\)/2. The linewidths of emission lines indicate a coherence time of 0.3-4 ns for the f\(_{J}\)/2 line, much shorter than for the f\(_{J}\) line (3-4 ns). These observations strongly point towards the presence of topological gapless Andreev bound states and pave the way for a future HgTe-based platform for topological quantum computation.}, language = {en} }