@article{KleinHesslingMuhammadKleinetal.2017, author = {Klein-Hessling, Stefan and Muhammad, Khalid and Klein, Matthias and Pusch, Tobias and Rudolf, Ronald and Fl{\"o}ter, Jessica and Qureischi, Musga and Beilhack, Andreas and Vaeth, Martin and Kummerow, Carsten and Backes, Christian and Schoppmeyer, Rouven and Hahn, Ulrike and Hoth, Markus and Bopp, Tobias and Berberich-Siebelt, Friederike and Patra, Amiya and Avots, Andris and M{\"u}ller, Nora and Schulze, Almut and Serfling, Edgar}, title = {NFATc1 controls the cytotoxicity of CD8\(^{+}\) T cells}, series = {Nature Communications}, volume = {8}, journal = {Nature Communications}, number = {511}, doi = {10.1038/s41467-017-00612-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170353}, year = {2017}, abstract = {Cytotoxic T lymphocytes are effector CD8\(^{+}\) T cells that eradicate infected and malignant cells. Here we show that the transcription factor NFATc1 controls the cytotoxicity of mouse cytotoxic T lymphocytes. Activation of Nfatc1\(^{-/-}\) cytotoxic T lymphocytes showed a defective cytoskeleton organization and recruitment of cytosolic organelles to immunological synapses. These cells have reduced cytotoxicity against tumor cells, and mice with NFATc1-deficient T cells are defective in controlling Listeria infection. Transcriptome analysis shows diminished RNA levels of numerous genes in Nfatc1\(^{-/-}\) CD8\(^{+}\) T cells, including Tbx21, Gzmb and genes encoding cytokines and chemokines, and genes controlling glycolysis. Nfatc1\(^{-/-}\), but not Nfatc2\(^{-/-}\) CD8\(^{+}\) T cells have an impaired metabolic switch to glycolysis, which can be restored by IL-2. Genome-wide ChIP-seq shows that NFATc1 binds many genes that control cytotoxic T lymphocyte activity. Together these data indicate that NFATc1 is an important regulator of cytotoxic T lymphocyte effector functions.}, language = {en} } @article{StegnervanEeuwijkAngayetal.2017, author = {Stegner, David and van Eeuwijk, Judith M.M. and Angay, Oğuzhan and Gorelashvili, Maximilian G. and Semeniak, Daniela and Pinnecker, J{\"u}rgen and Schmithausen, Patrick and Meyer, Imke and Friedrich, Mike and D{\"u}tting, Sebastian and Brede, Christian and Beilhack, Andreas and Schulze, Harald and Nieswandt, Bernhard and Heinze, Katrin G.}, title = {Thrombopoiesis is spatially regulated by the bone marrow vasculature}, series = {Nature Communications}, volume = {8}, journal = {Nature Communications}, number = {127}, doi = {10.1038/s41467-017-00201-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170591}, year = {2017}, abstract = {In mammals, megakaryocytes (MKs) in the bone marrow (BM) produce blood platelets, required for hemostasis and thrombosis. MKs originate from hematopoietic stem cells and are thought to migrate from an endosteal niche towards the vascular sinusoids during their maturation. Through imaging of MKs in the intact BM, here we show that MKs can be found within the entire BM, without a bias towards bone-distant regions. By combining in vivo two-photon microscopy and in situ light-sheet fluorescence microscopy with computational simulations, we reveal surprisingly slow MK migration, limited intervascular space, and a vessel-biased MK pool. These data challenge the current thrombopoiesis model of MK migration and support a modified model, where MKs at sinusoids are replenished by sinusoidal precursors rather than cells from a distant periostic niche. As MKs do not need to migrate to reach the vessel, therapies to increase MK numbers might be sufficient to raise platelet counts.}, language = {en} } @article{SchusterKruegerSubotaetal.2017, author = {Schuster, Sarah and Kr{\"u}ger, Timothy and Subota, Ines and Thusek, Sina and Rotureau, Brice and Beilhack, Andreas and Engstler, Markus}, title = {Developmental adaptations of trypanosome motility to the tsetse fly host environments unravel a multifaceted in vivo microswimmer system}, series = {eLife}, volume = {6}, journal = {eLife}, doi = {10.7554/eLife.27656}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158662}, pages = {e27656}, year = {2017}, abstract = {The highly motile and versatile protozoan pathogen Trypanosoma brucei undergoes a complex life cycle in the tsetse fly. Here we introduce the host insect as an expedient model environment for microswimmer research, as it allows examination of microbial motion within a diversified, secluded and yet microscopically tractable space. During their week-long journey through the different microenvironments of the fly´s interior organs, the incessantly swimming trypanosomes cross various barriers and confined surroundings, with concurrently occurring major changes of parasite cell architecture. Multicolour light sheet fluorescence microscopy provided information about tsetse tissue topology with unprecedented resolution and allowed the first 3D analysis of the infection process. High-speed fluorescence microscopy illuminated the versatile behaviour of trypanosome developmental stages, ranging from solitary motion and near-wall swimming to collective motility in synchronised swarms and in confinement. We correlate the microenvironments and trypanosome morphologies to high-speed motility data, which paves the way for cross-disciplinary microswimmer research in a naturally evolved environment.}, language = {en} }