@phdthesis{Steiger2017, author = {Steiger, Christoph}, title = {Drug delivery of therapeutic gases - strategies for controlled and local delivery of carbon monoxide}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-141054}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {The isoenzyme heme oxygenase 1 (HO-1) is a key element for maintaining cellular homeostasis. Upregulated in response to cellular stress, the HO-1 degrades heme into carbon monoxide (CO), biliverdin, and Fe2+. By means of a local cell-protective feedback loop the enzyme triggers numerous effects including anti-oxidative, anti-apoptotic, and anti-inflammatory events associated with complex signalling patterns which are largely orchestrated by CO. Various approaches to mimic this physiological HO-1 / CO system aiming for a treatment of medical conditions have been described [1]. These preclinical studies commonly applied CO systemically via (i) inhalation or (ii) using CO-Releasing Molecules (CORMs) [2]. The clinical use of these approaches, however, is challenged by a lack of practicability and substantial safety issues associated with the toxicity of high systemic doses of CO that are required for triggering therapeutic effects. Therefore, one rational of this thesis is to describe and evaluate strategies for the local delivery of CO aiming for safe and effective CO therapeutics of tomorrow.}, subject = {Targeted drug delivery}, language = {en} }