@article{NguyenKraftYuetal.2015, author = {Nguyen, Minh Thu and Kraft, Beatrice and Yu, Wenqi and Demicrioglu, Dogan Doruk and Hertlein, Tobias and Burian, Marc and Schmaler, Mathias and Boller, Klaus and Bekeredjian-Ding, Isabelle and Ohlsen, Knut and Schittek, Birgit and G{\"o}tz, Friedrich}, title = {The vSa\(\alpha\) Specific Lipoprotein Like Cluster (lpl) of S. aureus USA300 Contributes to Immune Stimulation and Invasion in Human Cells}, series = {PLoS Pathogens}, volume = {11}, journal = {PLoS Pathogens}, number = {6}, doi = {10.1371/journal.ppat.1004984}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-151856}, pages = {e1004984}, year = {2015}, abstract = {All Staphylococcus aureus genomes contain a genomic island, which is termed vSa\(\alpha\) and characterized by two clusters of tandem repeat sequences, i.e. the exotoxin (set) and 'lipoprotein-like' genes (lpl). Based on their structural similarities the vSa\(\alpha\) islands have been classified as type I to IV. The genomes of highly pathogenic and particularly epidemic S. aureus strains (USA300, N315, Mu50, NCTC8325, Newman, COL, JH1 or JH9) belonging to the clonal complexes CC5 and CC8 bear a type I vSa\(\alpha\) island. Since the contribution of the lpl gene cluster encoded in the vSa\(\alpha\) island to virulence is unclear to date, we deleted the entire lpl gene cluster in S. aureus USA300. The results showed that the mutant was deficient in the stimulation of pro-inflammatory cytokines in human monocytes, macrophages and keratinocytes. Purified lipoprotein Lpl1 was further shown to elicit a TLR2-dependent response. Furthermore, heterologous expression of the USA300 lpl cluster in other S. aureus strains enhanced their immune stimulatory activity. Most importantly, the lpl cluster contributed to invasion of S. aureus into human keratinocytes and mouse skin and the non-invasive S. carnosus expressing the lpl gene cluster became invasive. Additionally, in a murine kidney abscess model the bacterial burden in the kidneys was higher in wild type than in mutant mice. In this infection model the lpl cluster, thus, contributes to virulence. The present report is one of the first studies addressing the role of the vSa\(\alpha\) encoded lpl gene cluster in staphylococcal virulence. The finding that the lpl gene cluster contributes to internalization into non-professional antigen presenting cells such as keratinocytes high-lights the lpl as a new cell surface component that triggers host cell invasion by S. aureus. Increased invasion in murine skin and an increased bacterial burden in a murine kidney abscess model suggest that the lpl gene cluster serves as an important virulence factor.}, language = {en} } @article{HanzelmannJooFranzWachteletal.2016, author = {Hanzelmann, Dennis and Joo, Hwang-Soo and Franz-Wachtel, Mirita and Hertlein, Tobias and Stevanovic, Stefan and Macek, Boris and Wolz, Christiane and G{\"o}tz, Friedrich and Otto, Michael and Kretschmer, Dorothee and Peschel, Andreas}, title = {Toll-like receptor 2 activation depends on lipopeptide shedding by bacterial surfactants}, series = {Nature Communications}, volume = {7}, journal = {Nature Communications}, doi = {10.1038/ncomms12304}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165975}, pages = {12304}, year = {2016}, abstract = {Sepsis caused by Gram-positive bacterial pathogens is a major fatal disease but its molecular basis remains elusive. Toll-like receptor 2 (TLR2) has been implicated in the orchestration of inflammation and sepsis but its role appears to vary for different pathogen species and clones. Accordingly, Staphylococcus aureus clinical isolates differ substantially in their capacity to activate TLR2. Here we show that strong TLR2 stimulation depends on high-level production of phenol-soluble modulin (PSM) peptides in response to the global virulence activator Agr. PSMs are required for mobilizing lipoproteins, the TLR2 agonists, from the staphylococcal cytoplasmic membrane. Notably, the course of sepsis caused by PSM-deficient S. aureus is similar in wild-type and TLR2-deficient mice, but TLR2 is required for protection of mice against PSM-producing S. aureus. Thus, a crucial role of TLR2 depends on agonist release by bacterial surfactants. Modulation of this process may lead to new therapeutic strategies against Gram-positive infections.}, language = {en} }