@article{SirenMcCarronLiuetal.1993, author = {Sir{\´e}n, Anna-Leena and McCarron, R. M. and Liu, Y. and Barone, F. and Spatz, M. and Feuerstein, G. and Hallenbeck, J. M.}, title = {Perivascular monocyte/macrophage interaction with endothelium as a mechanism through which stroke-risk factors operate to increase stroke likelihood. Research Initiatives in Vascular Disease; SPECIAL COMMUNICATION}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-63006}, year = {1993}, abstract = {No abstract available}, subject = {Neurobiologie}, language = {en} } @article{PaakkariPaakkariLandesetal.1993, author = {Paakkari, P. and Paakkari, I. and Landes, P. and Sir{\´e}n, Anna-Leena and Feuerstein, G.}, title = {Respiratory \(\mu\)-Opioid and benzodiazepine interactions in the understrained rat}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-62974}, year = {1993}, abstract = {lnteractions of p-opioid receptors with the benzodiazepine system were studied by examining the modulatory effects of flumazenil (a benzodiazepine antagonist) and alprazolam (a benzodiazepine agonist) on the respiratory effects ofthe opioid peptide dermorphin. Dermorphin, 1-30 nmol administered i.c.v., to conscious, unrestrained rats decreased ventilation rate (VR) and minute volume (MV) dose-dependently. The ventilatory depression was antagonized by naloxone and by the benzodiazepine antagonist flumazenil. The benzodiazepine alprazolam potentiateri the respiratory inhibition of a small (I nmol) dose of dermorphin but antagonized that of a higher dos:~ (3 nmol). The results suggest that the benzodiazepine/GABA receptor complex modulates respiratory depression induced by centrat p-receptor Stimulation in the rat.}, subject = {Neurobiologie}, language = {en} } @article{PaakkariPaakkariVonhofetal.1993, author = {Paakkari, P. and Paakkari, I. and Vonhof, S. and Feuerstein, G. and Sir{\´e}n, Anna-Leena}, title = {Dermorphin analog Tyr-D-Arg\(^2\)-Phe-sarcosine-induces opioid analgesia and respiratory stimulation - the role of Mu\(_1\)- receptors?}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-62984}, year = {1993}, abstract = {Tyr-o-Arg\(^2\)-Phe-sarcosine\(^4\) (TAPS), a mu-selective tetrapeptide analog of dermorphin, induced sustained antinociception and stimulated ventilatory minute volume (MV) at the doses of 3 to 100 pmol i.c.v. The doses of 30 and 100 pmol i.c.v. induced catalepsy. The effect of TAPS on MV was in negative correlation with the dose and the maximal response was achieved by the lowest (3 pmol) dose (+63 ± 23\%, P < .05). Morphine, an agonist at both mu\(_1\) and mu\(_2\) sites, at a dose of 150 nmol i.c.v. (equianalgetic to 100 pmol of TAPS decreased the MV by 30\%, due to a decrease in ventilatory tidal volume. The antinociceptive effect of TAPS was antagonized by naloxone and the mu, receptor antagonist, naloxonazine. Naloxonazine also attenuated the catalepsy produced by 1 00 pmol of TAPS i.c. v. and the respiratory Stimulation produced by 3 pmol of TAPS i.c.v. Pretreatment with 30 pmol of TAPS antagonized the respiratory depression induced by the mu opioid agonist dermorphin (changes in MV after dermorphin alone at 1 or 3 nmol were -22 ± 1 0\% and -60 ± 9\% and, after pretreatment with TAPS, +44 ± 11 \% and -18 ± 5\%, respectively). After combined pretreatment with naloxonazine and TAPS, 1 nmol of dermorphin had no significant effect on ventilation. In contrast, pretreatment with a low respiratory stimulant dose (10 pmol i.c.v.) of dermorphin did not modify the effect of 1 nmol of dermorphin. ln conclusion, the antinociceptive, cataleptic and respiratory stimulant effects of TAPS appear to be a related to its agonist action at the mu, opioid receptors. TAPS did not induce respiratory depression (a mu\(_2\) opioid effect) but antagonized the respiratory depressant effect of another mu agonist. Thus, in vivo TAPS appears to act as a mu\(_2\) receptor antagonist.}, subject = {Neurobiologie}, language = {en} } @article{XuNaeveriFrerichsetal.1993, author = {Xu, K. and N{\"a}veri, L. and Frerichs, K. and Hallenbeck, J. M. and Feuerstein, G. and Davis, J. N. and Sir{\´e}n, Anna-Leena}, title = {Extracellular catecholamine levels in rat hippocampus after a selective alpha2-adrenoceptor antagonist or a selective dopamnie uptake inhibitor: Evidence for dopamine release from local dopaminergic nerve terminals}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-62997}, year = {1993}, abstract = {The effect of 6-chloro-2,3,4,5-tetrahydro-3-methyi-1-H-3-benzazepine (SKF 86466), a selectlve nonimldazoline alpha-2 adrenoceptor antagonlst, on hippocampal re1ease of norepinephrine and dopamlne in conscious rats was lnvestigated by /n vlvo mlcrodialysis and high-pressure liquid chromatography. Additionally, extracellular concentrations of hippocampal dopamine (DA) and norepinephrtne (NE), durtng Infusion of selective monoamine uptake Inhibitors, were determined in freely moving rats. The basal concentration of NE in the dialysate was 4.9 ± 0.3 pg/20 pl. lntravenous admlnistratlon of 5 or 10 mgJkg of SKF 86466 was associated wlth a transierlt inc:rease (30 min) of 2-fold (12 ± 1 pg/20 ,d; p < .05) and 8-fold (39 ± 3 pg/20 pl; p < .05), respectlvely, in dlalysate NE, whereas a 1-mgfkg dose had no effect. DA was not detected in basal dlalysates, but after the adminlstratlon of 5 or 10 mgJkg of SKF 86466, 3.9 ± 0.4 and 6.4 ± 0.6 pg/20 pl, respectlvely, was present in the dialysates. The rnaxlmum increase in dialysate DA was reached 60 to 90 min after SKF 86466. The DA was not derived from plasma because plasma NE was elevated after the 5 mgJkg dose of SKF 86466 whereas no plasma DA was detected. ln order to determlne whether DA was present in noradrenergic nerve termlnals, the dopamine ß-hydroxylase Inhibitor SKF 1 02698 was administered (50 mgJkg i.p.). The Inhibitor decreased dialysate NE but DA was stin not detected in the dialysate. When SKF 86466 (5 mgJkg t.v.) was adminlstered 4 hr after SKF 102698, DA appeared in the dialysate but there was no lncrease in dialysate NE. Administration through the dialysis probe of the DA uptake Inhibitor, GBR-12909 (0.1 and 1 pM), dose-dependently lnaeased DA Ieveis to 5.7 ± 1.2 and 9.6 ± 2.8 pg/20 pl, respectively. GBR-12909 had no effect on hippocampal NE. Desipramine (5 and 10 pM) lncreased dose-dependently dialysate NE and lncreased DA concentrations to detectable Ieveis (2.7 ± 0.5 and 3.5 ± 0.7 pg/20 ,d, respectively). These results suggest that the a/pha-2 adrenoceptors modulate both NE and DA release in the rat hlppocampus and that DA detected in the hlppocampal dialysate might be released from dopaminergic neurons.}, subject = {Neurobiologie}, language = {en} } @article{SirenLiuFeuersteinetal.1993, author = {Sir{\`e}n, Anna-Leena and Liu, Y. and Feuerstein, G. and Hallenbeck, JM}, title = {Increased release of tumor necrosis factor alpha into the cerebrospinal fluid and peripheral circulation of aged rats}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-47997}, year = {1993}, abstract = {Background and Purpose: We earlier reported that risk factors for stroke prepare brain stem tissue for a modified Shwartzman reaction, incIuding the development of ischemia and hemorrhage and the production of tumor necrosis factor-a, after a provocative dose of lipopolysaccharide. In the present study, we sought to determine whether blood and central nervous system cells of rats with the stroke risk factor of advanced age produce more proinflammatory and prothrombotic media tors than do those of young rats of the same strain. Methods: Levels of tumor necrosis factor-a and platelet activating factor in the cerebrospinal fluid and tumor necrosis factor-a in the serum of 2-year-old and 16-week-old Sprague-Dawley rats were monitored before and after challenge with lipopolysaccharide. Results: No consistent tumor necrosis factor-a activity was found in the cerebrospinal fluid or blood of control animals. Intravenous administration of lipopolysaccharide (1.8 mg/kg) increased serum tumor necrosis factor-a levels but had no effect on tumor necrosis factor-a in the cerebrospinal fluid. Serum tumor necrosis factor-a increased much more in aged rats than in young rats. When lipopolysaccharide was injected intracerebroventricularly, tumor necrosis factor-a activity in cerebrospinal fluid increased significantly more in old rats than in young rats. Baseline levels of platelet activating factor in cerebrospinal fluid were significantly higher in old rats than in young rats, and the levels increased to a greater degree in aged rats on stimulation. Conclusions: Rats with the stroke risk factor of advanced age respond to lipopolysaccharide with a more exuberant production of tumor necrosis factor-a and platelet activating factor than young rats of the same strain. These findings are consistent with our working hypothesis that perivascular cells are capable of exaggerated signaling of endothelium through cytokines such as tumor necrosis factor-a in animals with stroke risk factors. The effect of such signaling might be to prepare the endothelium of the local vascular segment for thrombosis or hemorrhage in accord with the local Shwartzman reaction paradigm.}, subject = {Gehirn}, language = {en} } @article{PaakkariPaakkariFeuersteinetal.1992, author = {Paakkari, P. and Paakkari, I. and Feuerstein, G. and Sir{\´e}n, Anna-Leena}, title = {Evidence for differential opioid µ\(_1\)- and µ\(_2\)-receptor regulation of heart rate in the conscious rat}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-63017}, year = {1992}, abstract = {The possibility that \(\mu\)Opioid-induced tachycardia and bradycardia could be mediated by different subtypes of the \(\mu\)·receptor was studied in conscious Sprague-Dawley rats. The selective \(\mu\)·receptor agonist dermorphin and its analog, TAPS (Tyr-o-Arg-Phe-sarcosine), a putative \(\mu _1\)-receptor agonist, were given centrally. Tyr-o-Arg-Phe-sarcosine increased the heart rate, the response being inversely correlated to the dose (an increase of 71 ± 22, 49 ± 14 and 30 ± 17 beats/min at doses of 0.3, 3 and 30 pmol, respectively). Dermorphin induced less clear changes in heart rate (maximum increase of 39 ± 14 beats/min at the dose of 1 pmol). Aftertreatment with the Jl 1-selective antagonist naloxonazine (NAZ), TAPS 30 pmol and dennorphin I pmol decreased heart rate by -22 ± 10 and -24 ± 7 bpm, respectively. The bradycardic effect oflarger doses of dennorphin was potentiated by NAZ (from -25 ± 8 to -97 ± 22 bpm) but abolished by the non-selective antagonist naloxone. These data suggest that the high affinity \(\mu _1\)-opioid receptors mediate tachycardic responses and \(\mu _2\)-receptors mediate bradycardic responses.}, subject = {Neurobiologie}, language = {en} } @article{SirenFeuerstein1992, author = {Sir{\´e}n, Anna-Leena and Feuerstein, G.}, title = {The Opioid System in circulatory control}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-63045}, year = {1992}, abstract = {Opioid peptidesandmultiple opioid receptors are found in brain cardiovascular nuclei, autonomic ganglia, the heart, and blood vessels, and opioids induce potent cardiovascular changes. The role of endogenaus opioids in normal cardiovascular homeostasis is unclear; however, current data suggest opioid involvement in stress.}, subject = {Neurobiologie}, language = {en} } @article{DoronMcCarronHeldmanetal.1992, author = {Doron, D. A. and McCarron, D. M. and Heldman, E. and Sir{\´e}n, Anna-Leena and Spatz, M. and Feuerstein, G. and Pollard, H. B. and Hallenbeck, J. M.}, title = {Comparison of stimulated tissue factor expression by brain microvascular endothelial cells from normotensive (WKY) and hypertensive (SHR) rats}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-63032}, year = {1992}, abstract = {The amounts of tissue factor (TF) expressed by brain microvascular endothelial cells (BMECs) from normotensive Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR) were compared after stimulating the cells with different doses of lipopolysaccharide (LPS), thrombin, phorbol myristic acid (PMA), Ca\(^{2+}\)·ionophore (A23187), or tumor necrosis factor (TNF) and interleukin·l (IL.l). Treatment ofcultured BMECs fron. WKY and SHR with all of these factors dose·dependently increased their total amount of TF; no substantive differences in the Ieveis of enhanced TF expression were observed between WKY and SHR BMECs. We conclude that stimulated endothelium from rats with hypertension, a major stroke risk factor, is not hyperresponsive with respect to TF expression when compared to normotensive controls.}, subject = {Neurobiologie}, language = {en} } @article{FrerichsSirenFeuersteinetal.1992, author = {Frerichs, K. and Sir{\`e}n, Anna-Leena and Feuerstein, G. and Hallenbeck, JM}, title = {The onset of postischemic hypoperfusion in rats is precipitous and may be controlled by local neurons}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-47980}, year = {1992}, abstract = {Background and Purpose: Reperfusion following transient global cerebral ischemia is characterized by an initial hyperemic phase, which precedes hypo perfusion. The pathogenesis of these flow derangements remains obscure. Our study investigates the dynamics of postischemic cerebral blood flow changes, with particular attention to the role of local neurons. Metho(Js: We assessed local cortical blood flow continuously by laser Doppler flowmetry to permit observation of any rapid flow changes after forebrain ischemia induced by four-vessel occlusion for 20 minutes in rats. To investigate the role of local cortical neurons in the regulation of any blood flow fluctuations, five rats received intracortical microinjections of a neurotoxin (10 p,g ibotenic acid in 1 p,1; 1.5-mm-depth parietal cortex) 24 hours before ischemia to induce selective and localized neuronal depletion in an area corresponding to the sampie volume of the laser Doppler probe (1 mm3 ). Local cerebral blood flow was measured within the injection site and at an adjacent control site. Results: Ischemia was followed by marked hyperemia (235 ±23\% of control, n =7), followed by secondary hypoperfusion (45±3\% of control, n=7). The transition from hyperemia to hypoperfusioo occurred not gradually but precipitously (maximal slope of flow decay: 66±6\%/min; n=7). In ibotenic acid-injected rats, hyperemia was preserved at the injection site, but the sudden decline of blood flow was abolished (maximal slope of flow decay: 5±3\%/min compared with 53±8\%/min at the control site; n=5, p