@phdthesis{Scholz2017, author = {Scholz, Nicole}, title = {Genetic analyses of sensory and motoneuron physiology in Drosophila melanogaster}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-123249}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {During my PhD I studied two principal biological aspects employing Drosophila melanogaster. Therefore, this study is divided into Part I and II. Part I: Bruchpilot and Complexin interact to regulate synaptic vesicle tethering to the active zone cytomatrix At the presynaptic active zone (AZ) synaptic vesicles (SVs) are often physically linked to an electron-dense cytomatrix - a process referred to as "SV tethering". This process serves to concentrate SVs in close proximity to their release sites before contacting the SNARE complex for subsequent fusion (Hallermann and Silver, 2013). In Drosophila, the AZ protein Bruchpilot (BRP) is part of the proteinous cytomatrix at which SVs accumulate (Kittel et al., 2006b; Wagh et al., 2006; Fouquet et al., 2009). Intriguingly, truncation of only 1\% of the C-terminal region of BRP results in a severe defect in SV tethering to this AZ scaffold (hence named brpnude; Hallermann et al., 2010b). Consistent with these findings, cell-specific overexpression of a C-terminal BRP fragment, named mBRPC-tip (corresponds to 1\% absent in brpnude; m = mobile) phenocopied the brpnude mutant in behavioral and functional experiments. These data indicate that mBRPC-tip suffices to saturate putative SV binding sites, which induced a functional tethering deficit at motoneuronal AZs. However, the molecular identity of the BRP complement to tether SVs to the presynaptic AZ scaffold remains unknown. Moreover, within larval motoneurons membrane-attached C-terminal portions of BRP were sufficient to tether SVs to sites outside of the AZ. Based on this finding a genetic screen was designed to identify BRP interactors in vivo. This screen identified Complexin (CPX), which is known to inhibit spontaneous SV fusion and to enhance stimulus evoked SV release (Huntwork and Littleton, 2007; Cho et al., 2010; Martin et al., 2011). However, so far CPX has not been associated with a function upstream of priming/docking and release of SVs. This work provides morphological and functional evidence, which suggests that CPX promotes recruitment of SVs to the AZ and thereby curtails synaptic short-term depression. Together, the presented findings indicate a functional interaction between BRP and CPX at Drosophila AZs. Part II: The Adhesion-GPCR Latrophilin/CIRL shapes mechanosensation The calcium independent receptor of α-latrotoxin (CIRL), also named Latrophilin, represents a prototypic Adhesion class G-protein coupled-receptor (aGPCR). Initially, Latrophilin was identified based on its capacity to bind the α-component of latrotoxin (α-LTX; Davletov et al., 1996; Krasnoperov et al., 1996), which triggers massive exocytotic activity from neurons of the peripheral nervous system (Scheer et al., 1984; Umbach et al., 1998; Orlova et al., 2000). As a result Latrophilin is considered to play a role in synaptic transmission. Later on, Latrophilins have been associated with other biological processes including tissue polarity (Langenhan et al., 2009), fertility (Pr{\"o}mel et al., 2012) and synaptogenesis (Silva et al., 2011). However, thus far its subcellular localization and the identity of endogenous ligands, two aspects crucial for the comprehension of Latrophilin's in vivo function, remain enigmatic. Drosophila contains only one latrophilin homolog, named dCirl, whose function has not been investigated thus far. This study demonstrates abundant dCirl expression throughout the nervous system of Drosophila larvae. dCirlKO animals are viable and display no defects in development and neuronal differentiation. However, dCirl appears to influence the dimension of the postsynaptic sub-synaptic reticulum (SSR), which was accompanied by an increase in the postsynaptic Discs-large abundance (DLG). In contrast, morphological and functional properties of presynaptic motoneurons were not compromised by the removal of dCirl. Instead, dCirl is required for the perception of mechanical challenges (acoustic-, tactile- and proprioceptive stimuli) through specialized mechanosensory devices, chordotonal organs (Eberl, 1999). The data indicate that dCirl modulates the sensitivity of chordotonal neurons towards mechanical stimulation and thereby adjusts their input-output relation. Genetic interaction analyses suggest that adaption of the molecular mechanotransduction machinery by dCirl may underlie this process. Together, these results uncover an unexpected function of Latrophilin/dCIRL in mechanosensation and imply general modulatory roles of aGPCR in mechanoception.}, subject = {Drosophila}, language = {en} } @phdthesis{Lyga2017, author = {Lyga, Sandra}, title = {Glycoprotein hormone receptor signaling in the endosomal compartment}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-139994}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {G protein-coupled receptors (GPCRs) are the major group of cell-surface receptors that transmit extracellular signals via classical, G protein-dependent pathways into the cell. Although GPCRs were long assumed to signal exclusively from the cell-surface, recent investigations have demonstrated a possibly completely new paradigm. In this new view, GPCR continues signaling via 3´,5´-cyclic adenosine monophosphate (cAMP) after their agonist-induced internalization of ligand/receptor complexes into an intracellular compartment, causing persistent cAMP elevation and apparently specific signaling outcomes. The thyroid stimulating hormone (TSH) receptor is one of the first GPCRs, which has been reported to show persistent signaling after ligand removal (Calebiro et al., 2009). In the meantime, signaling by internalized GPCR become a highly investigated topic and has been shown for several GPCRs, including the parathyroid hormone receptor (Ferrandon et al., 2009), D1 dopamine receptor (Kotowski et al., 2011) and beta2-adrenergic receptor (Irannejad et al., 2013). A recent study on the beta2-adrenergic receptor revealed that internalized receptor not only participates in cAMP signaling, but is also involved in gene transcription (Tsvetanova and von Zastrow, 2014). However, a biological effect of GPCR signaling at intracellular sites, which would demonstrate its physiological relevance, still remained to be shown. To investigate GPCR signaling from intracellular compartment under physiological condition, two different cellular models were utilized in the present study: intact ovarian follicles expressing luteinizing hormone (LH) receptors and primary thyroid cells expressing TSH receptors. Intact ovarian follicles were obtained from a transgenic mouse expressing, a F{\"o}rster/Fluorescence Resonance Energy Transfer (FRET) sensor for cAMP to monitor cAMP/LH receptor signaling. This study provides the first accurate spatiotemporal characterization of cAMP signaling, which is derived from different cell layers of an intact ovarian follicle. Additionally, it could be shown that cAMP diffusion via gap junctions is implicated in spreading the LH-induced cAMP signals from one the outermost (mural granulosa) to the innermost (cumulus oophorus) cell layer of an ovarian follicle. Interestingly, LH receptor stimulation was associated with persistent cAMP signaling after LH removal and negligible desensitization of the cAMP signal. Interfering with receptor internalization with a dynamin inhibitor dynasore did not only prevent persistent LH-induced cAMP signaling, but also impaired the resumption of meiosis in follicle-enclosed oocytes, a key biological effect of LH. In order to investigate the downstream activation of protein kinase A (PKA) in primary thyroid cells, FRET sensors with different subcellular localization (plasma membrane, cytosol and nucleus) were transiently transfected into primary thyroid cells of wild-type mice via electroporation. Interestingly, TSH stimulation causes at least two distinct phases of PKA activation in the global primary thyroid cell, which are temporally separated by approximately 2 min. In addition, PKA activation in different subcellular compartments are characterized by dissimilar kinetics and amplitudes. Pharmacological inhibition of TSH receptor internalization largely prevented the second (i.e. late) phase of PKA activation as well as the subsequent TSH-dependent phosphorylation of CREB and TSH-dependent induction of early genes. These results suggest that PKA activation and nuclear signaling require internalization of the TSH receptor. Taken together, the data of the present study provide strong evidence that GPCR signaling at intracellular sites is distinct from the one occurring at the cell-surface and is highly physiologically relevant.}, subject = {GPCR}, language = {en} }