@phdthesis{Lichter2023, author = {Lichter, Katharina}, title = {Die Ultrastruktur von Aktiven Zonen in hippocampalen Moosfaserboutons}, doi = {10.25972/OPUS-30312}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-303126}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {In nervous systems, synapses precisely orchestrate information transfer and memory formation. Active zones (AZ) are specialized subcellular compartments at the presynaptic mesoscale which process synaptic transmission on an ultrastructural level. The AZ cytomatrix including the essential scaffold protein Rab3 interacting molecule (RIM) enables exocytosis of synaptic vesicles. A deficiency of the locally most abundant protein isoform RIM1α diminishes long-term potentiation in a complex central mammalian synapse - the connection of hippocampal mossy fiber boutons (MFB) to cornu ammonis (CA)3 pyramidal neurons. Behaviourally, these mice present with learning impairment. The present MD thesis addresses the so far unknown three-dimensional (3D) AZ ultrastructure of MFBs in acute hippocampal slices of wild-type and RIM1α-/- mice. In a first set of experiments, a standardized protocol for near-to-native synaptic tissue preparation at MFBs using high-pressure freezing and freeze substitution and 3D modelling using electron tomography was developed and established. Based on the excellent preservation of synaptic tissue using this protocol, the AZ ultrastructure in both genotypes was quantified in detail up to an individual docked synaptic vesicle using custom-written programming scripts. The experiments demonstrate that deficiency of RIM1α leads to multidimensional alter-ation of AZ 3D ultrastructure and synaptic vesicle pools in MFBs. (Tightly) docked synaptic vesicles - ultrastructural correlates of the readily releasable pool - are reduced, decentralized, and structurally modified, whereas the more distant vesicle pool clusters more densely above larger and more heterogenous AZ surfaces with higher synaptic clefts. The present thesis contributes to a more comprehensive understanding regarding the role of RIM1α for (tight) vesicle docking and organization at MFBs. Furthermore, the precise 3D ultrastructural analysis of MFB AZs in this thesis provides the necessary mor-phological basis for further studies to correlate synaptic ultrastructure with presynaptic plasticity and memory dysfunction in RIM1α-/- mice using advanced electrophysiological and behavioral techniques.}, subject = {Hippocampus}, language = {de} } @article{MrestaniLichterSirenetal.2023, author = {Mrestani, Achmed and Lichter, Katharina and Sir{\´e}n, Anna-Leena and Heckmann, Manfred and Paul, Mila M. and Pauli, Martin}, title = {Single-molecule localization microscopy of presynaptic active zones in Drosophila melanogaster after rapid cryofixation}, series = {International Journal of Molecular Sciences}, volume = {24}, journal = {International Journal of Molecular Sciences}, number = {3}, issn = {1422-0067}, doi = {10.3390/ijms24032128}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-304904}, year = {2023}, abstract = {Single-molecule localization microscopy (SMLM) greatly advances structural studies of diverse biological tissues. For example, presynaptic active zone (AZ) nanotopology is resolved in increasing detail. Immunofluorescence imaging of AZ proteins usually relies on epitope preservation using aldehyde-based immunocompetent fixation. Cryofixation techniques, such as high-pressure freezing (HPF) and freeze substitution (FS), are widely used for ultrastructural studies of presynaptic architecture in electron microscopy (EM). HPF/FS demonstrated nearer-to-native preservation of AZ ultrastructure, e.g., by facilitating single filamentous structures. Here, we present a protocol combining the advantages of HPF/FS and direct stochastic optical reconstruction microscopy (dSTORM) to quantify nanotopology of the AZ scaffold protein Bruchpilot (Brp) at neuromuscular junctions (NMJs) of Drosophila melanogaster. Using this standardized model, we tested for preservation of Brp clusters in different FS protocols compared to classical aldehyde fixation. In HPF/FS samples, presynaptic boutons were structurally well preserved with ~22\% smaller Brp clusters that allowed quantification of subcluster topology. In summary, we established a standardized near-to-native preparation and immunohistochemistry protocol for SMLM analyses of AZ protein clusters in a defined model synapse. Our protocol could be adapted to study protein arrangements at single-molecule resolution in other intact tissue preparations.}, language = {en} } @article{PaulMiedenLeferingetal.2023, author = {Paul, Mila M. and Mieden, Hannah J. and Lefering, Rolf and Kupczyk, Eva K. and Jordan, Martin C. and Gilbert, Fabian and Meffert, Rainer H. and Sir{\´e}n, Anna-Leena and Hoelscher-Doht, Stefanie}, title = {Impact of a femoral fracture on outcome after traumatic brain injury — a matched-pair analysis of the TraumaRegister DGU\(^®\)}, series = {Journal of Clinical Medicine}, volume = {12}, journal = {Journal of Clinical Medicine}, number = {11}, issn = {2077-0383}, doi = {10.3390/jcm12113802}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-319363}, year = {2023}, abstract = {Traumatic brain injury (TBI) is the leading cause of death and disability in polytrauma and is often accompanied by concomitant injuries. We conducted a retrospective matched-pair analysis of data from a 10-year period from the multicenter database TraumaRegister DGU\(^®\) to analyze the impact of a concomitant femoral fracture on the outcome of TBI patients. A total of 4508 patients with moderate to critical TBI were included and matched by severity of TBI, American Society of Anesthesiologists (ASA) risk classification, initial Glasgow Coma Scale (GCS), age, and sex. Patients who suffered combined TBI and femoral fracture showed increased mortality and worse outcome at the time of discharge, a higher chance of multi-organ failure, and a rate of neurosurgical intervention. Especially those with moderate TBI showed enhanced in-hospital mortality when presenting with a concomitant femoral fracture (p = 0.037). The choice of fracture treatment (damage control orthopedics vs. early total care) did not impact mortality. In summary, patients with combined TBI and femoral fracture have higher mortality, more in-hospital complications, an increased need for neurosurgical intervention, and inferior outcome compared to patients with TBI solely. More investigations are needed to decipher the pathophysiological consequences of a long-bone fracture on the outcome after TBI.}, language = {en} } @article{AueEnglertHarreretal.2023, author = {Aue, Annemarie and Englert, Nils and Harrer, Leon and Schwiering, Fabian and Gaab, Annika and K{\"o}nig, Peter and Adams, Ralf and Schmidtko, Achim and Friebe, Andreas and Groneberg, Dieter}, title = {NO-sensitive guanylyl cyclase discriminates pericyte-derived interstitial from intra-alveolar myofibroblasts in murine pulmonary fibrosis}, series = {Respiratory Research}, volume = {24}, journal = {Respiratory Research}, doi = {10.1186/s12931-023-02479-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357805}, year = {2023}, abstract = {Background The origin of αSMA-positive myofibroblasts, key players within organ fibrosis, is still not fully elucidated. Pericytes have been discussed as myofibroblast progenitors in several organs including the lung. Methods Using tamoxifen-inducible PDGFRβ-tdTomato mice (PDGFRβ-CreERT2; R26tdTomato) lineage of lung pericytes was traced. To induce lung fibrosis, a single orotracheal dose of bleomycin was given. Lung tissue was investigated by immunofluorescence analyses, hydroxyproline collagen assay and RT-qPCR. Results Lineage tracing combined with immunofluorescence for nitric oxide-sensitive guanylyl cyclase (NO-GC) as marker for PDGFRβ-positive pericytes allows differentiating two types of αSMA-expressing myofibroblasts in murine pulmonary fibrosis: (1) interstitial myofibroblasts that localize in the alveolar wall, derive from PDGFRβ+ pericytes, express NO-GC and produce collagen 1. (2) intra-alveolar myofibroblasts which do not derive from pericytes (but express PDGFRβ de novo after injury), are negative for NO-GC, have a large multipolar shape and appear to spread over several alveoli within the injured areas. Moreover, NO-GC expression is reduced during fibrosis, i.e., after pericyte-to-myofibroblast transition. Conclusion In summary, αSMA/PDGFRβ-positive myofibroblasts should not be addressed as a homogeneous target cell type within pulmonary fibrosis.}, language = {en} }