@article{LeonhardtSchmittBluethgen2011, author = {Leonhardt, Sara D. and Schmitt, Thomas and Bl{\"u}thgen, Nico}, title = {Tree Resin Composition, Collection Behavior and Selective Filters Shape Chemical Profiles of Tropical Bees (Apidae: Meliponini)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-69035}, year = {2011}, abstract = {The diversity of species is striking, but can be far exceeded by the chemical diversity of compounds collected, produced or used by them. Here, we relate the specificity of plant-consumer interactions to chemical diversity applying a comparative network analysis to both levels. Chemical diversity was explored for interactions between tropical stingless bees and plant resins, which bees collect for nest construction and to deter predators and microbes. Resins also function as an environmental source for terpenes that serve as appeasement allomones and protection against predators when accumulated on the bees' body surfaces. To unravel the origin of the bees' complex chemical profiles, we investigated resin collection and the processing of resin-derived terpenes. We therefore analyzed chemical networks of tree resins, foraging networks of resin collecting bees, and their acquired chemical networks. We revealed that 113 terpenes in nests of six bee species and 83 on their body surfaces comprised a subset of the 1,117 compounds found in resins from seven tree species. Sesquiterpenes were the most variable class of terpenes. Albeit widely present in tree resins, they were only found on the body surface of some species, but entirely lacking in others. Moreover, whereas the nest profile of Tetragonula melanocephala contained sesquiterpenes, its surface profile did not. Stingless bees showed a generalized collecting behavior among resin sources, and only a hitherto undescribed species-specific ''filtering'' of resin-derived terpenes can explain the variation in chemical profiles of nests and body surfaces fromdifferent species. The tight relationship between bees and tree resins of a large variety of species elucidates why the bees' surfaces contain a much higher chemodiversity than other hymenopterans.}, subject = {Stachellose Biene}, language = {en} } @misc{Wenzel2011, type = {Master Thesis}, author = {Wenzel, Frank}, title = {Smell and repel: Resin based defense mechanisms and interactions between Australian ants and stingless bees}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-65960}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Bees are subject to permanent threat from predators such as ants. Their nests with large quantities of brood, pollen and honey represent lucrative targets for attacks whereas foragers have to face rivalry at food sources. This thesis focused on the role of stingless bees as third party interactor on ant-aphid-associations as well as on the predatory potential represented by ants and defense mechanisms against this threat. Regular observations of an aphid infested Podocarpus for approaching stingless bees yielded no results. Another aim of this thesis was the observation of foraging habits of four native and one introduced ant species for assessment of their predatory potential to stingless bees. All species turned out to be dietary balanced generalists with one mostly carnivorous species and four species predominantly collecting nectar roughly according to optimal foraging theory. Two of the species monitored, Rhytidoponera metallica and Iridomyrmex rufoniger were considered potential nest robbers. As the name implies, stingless bees lack the powerful weapon of their distant relatives; hence they specialized on other defense strategies. Resin is an important, multipurpose resource for stingless bees that is used as material for nest construction, antibiotic and for defensive means. For the latter purpose highly viscous resin is either directly used to stick down aggressors or its terpenic compounds are included in the bees cuticular surface. In a feeding choice experiment, three ant species were confronted with the choice between two native bee species - Tetragonula carbonaria and Austroplebeia australis - with different cuticular profiles and resin collection habits. Two of the ant species, especially the introduced Tetramorium bicarinatum did not show any preferences. The carnivorous R. metallica predominantly took the less resinous A. australis as prey. The reluctance towards T. carbonaria disappeared when the resinous compounds on its cuticle had been washed off with hexane. To test whether the repulsive reactions were related to the stickiness of the resinous surface or to chemical substances, hexane extracts of bees' cuticles, propolis and three natural tree resins were prepared. In the following assay responses of ants towards extract treated surfaces were observed. Except for one of the resin extracts, all tested substances had repellent effects to the ants. Efficacy varied with the type of extract and species. Especially to the introduced T. bicarinatum the cuticular extract had no effect. GCMS-analyses showed that some of the resinous compounds were also found in the cuticular profile of T. carbonaria which featured reasonable analogies to the resin of Corymbia torelliana that is highly attractive for stingless bees. The results showed that repellent effects were only partially related to the sticky quality of resin but were rather caused by chemical substances, presumably sesqui- and diterpenes. Despite its efficacy this defense strategy only provides short time repellent effects sufficient for escape and warning of nest mates to initiate further preventive measures.}, subject = {Stachellose Biene}, language = {en} } @phdthesis{Eltz2001, author = {Eltz, Thomas}, title = {Ecology of stingless bees (Apidae, Meliponini) in lowland dipterocarp forests in Sabah, Malaysia, and an evaluation of logging impact on populations and communities}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-1130}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2001}, abstract = {The present thesis reports on four years of field research on stingless bee ecology in Sabah, Malaysia. Hereby, it was the main focus to evaluate the effect of selective logging for timber extraction on communities of bees, and to elucidate causative relationships involved in regulating bee populations. Included were background studies on resource use (3.1, 3.2, 3.3) and nesting biology (3.4) as well as comparative studies on stingless bee diversity and abundance in logged and unlogged lowland rainforest sites (4.1, 4.2). Stingless bees proved to be generalist foragers that used a large range of plant species as pollen sources. Nevertheless, different species of bees had rather distinct pollen diets, a findind that was independent of fluctuations in flowering activity in the habitat. At one particular point in time colonies of one species (Trigona collina)collected mold spores (Rhizopus sp.) as a pollen surrogate. In order to obtain low-effort estimates of meliponine pollen sources a new method was developed: Trapping of bee garbage (with funnel traps) and the quantitative analysis of pollen in garbage samples. Pollen in bee garbage reflected pollen import with a certain time lag and could therefore be used for an assessment of long-term pollen foraging (see below). The majority of stingless bee nests (275 nests of 12 species) were found in cavities in trunks or under the bases of large, living canopy trees. Nest trees mostly belonged to commercial species and were of the correct size and (partly) timber quality to warrant harvesting. It was estimated that roughly one third of stingless bee nests in an given forest area would be killed during a selective logging operation. Besides causing direct mortality, logging may also indirectly affect bee populations by reducing the availability of potential nest sites (trees). However, in a comparison of primary and differentially logged forest sites (10 to 30 years after logging) no effect of the degree of disturbance on meliponine nest density was found. Instead, the variation in nest density (0 to 16.2 nest/ha) was best explained by differences in the available floral resources (assessed by analysis of pollen in bee garbage). Bee populations in forest edge situations were favored: there was a positive correlation between nest density and the proportion of external non-forest pollen (e.g. from crop plants, road edge vegetation, mangroves) in the bees' diet. The highest nest density was found in a site bordering the mangroves in Sandakan Bay. Here, the mangrove tree Rhizophora apiculata represented a extraordinary large fraction of the pollen volume. Presumably, external pollen sources effectively supplement bee diets at times when little flowering occurs inside the forest, thus increasing overall bee carrying-capacity. The idea of differential pollen limitation was strengthened by direct measurements of pollen import and foraging activity over a period of five months. Both were elevated in colonies in a site with high bee density. It is concluded that the abundance of stingless bees in forests in Sabah is chiefly dependent on the local availability of food resources. Hereby, bee populations strongly benefit from edge effects and increased habitat diversity. Although direct negative effects of selective logging are strongly indicated by a close association of bee nests with commercial trees, no clear effects were detected in regenerating forests ten to 30 years after logging.}, subject = {Sabah}, language = {en} }