@phdthesis{Burger2017, author = {Burger, Valentin}, title = {Performance Evalution and Optimization of Content Delivery Networks}, issn = {1432-8801}, doi = {10.25972/OPUS-15276}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-152769}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Content Delivery Networks (CDNs) are networks that distribute content in the Internet. CDNs are increasingly responsible for the largest share of traffic in the Internet. CDNs distribute popular content to caches in many geographical areas to save bandwidth by avoiding unnecessary multihop retransmission. By bringing the content geographically closer to the user, CDNs also reduce the latency of the services. Besides end users and content providers, which require high availability of high quality content, CDN providers and Internet Service Providers (ISPs) are interested in an efficient operation of CDNs. In order to ensure an efficient replication of the content, CDN providers have a network of (globally) distributed interconnected datacenters at different points of presence (PoPs). ISPs aim to provide reliable and high speed Internet access. They try to keep the load on the network low and to reduce cost for connectivity with other ISPs. The increasing number of mobile devices such as smart phones and tablets, high definition video content and high resolution displays result in a continuous growth in mobile traffic. This growth in mobile traffic is further accelerated by newly emerging services, such as mobile live streaming and broadcasting services. The steep increase in mobile traffic is expected to reach by 2018 roughly 60\% of total network traffic, the majority of which will be video. To handle the growth in mobile networks, the next generation of 5G mobile networks is designed to have higher access rates and an increased densification of the network infrastructure. With the explosion of access rates and number of base stations the backhaul of wireless networks will become congested. To reduce the load on the backhaul, the research community suggests installing local caches in gateway routers between the wireless network and the Internet, in base stations of different sizes, and in end-user devices. The local deployment of caches allows keeping the traffic within the ISPs network. The caches are organized in a hierarchy, where caches in the lowest tier are requested first. The request is forwarded to the next tier, if the requested object is not found. Appropriate evaluation methods are required to optimally dimension the caches dependent on the traffic characteristics and the available resources. Additionally methods are necessary that allow performance evaluation of backhaul bandwidth aggregation systems, which further reduce the load on the backhaul. This thesis analyses CDNs utilizing locally available resources and develops the following evaluations and optimization approaches: Characterization of CDNs and distribution of resources in the Internet, analysis and optimization of hierarchical caching systems with bandwidth constraints and performance evaluation of bandwidth aggregation systems.}, subject = {CDN-Netzwerk}, language = {en} }