@article{AschKaufmannWalteretal.2021, author = {Asch, Silke and Kaufmann, Tobias Peter and Walter, Michaela and Leistner, Marcus and Danner, Bernd C. and Perl, Thorsten and Kutschka, Ingo and Niehaus, Heidi}, title = {The effect of perioperative hemadsorption in patients operated for acute infective endocarditis—A randomized controlled study}, series = {Artificial Organs}, volume = {45}, journal = {Artificial Organs}, number = {11}, doi = {10.1111/aor.14019}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-262681}, pages = {1328 -- 1337}, year = {2021}, abstract = {Patients operated for infective endocarditis (IE) are at high risk of developing an excessive systemic hyperinflammatory state, resulting in systemic inflammatory response syndrome and septic shock. Hemoadsorption (HA) by cytokine adsorbers has been successfully applied to remove inflammatory mediators. This randomized controlled trial investigates the effect of perioperative HA therapy on inflammatory parameters and hemodynamic status in patients operated for IE. A total of 20 patients were randomly assigned to either HA therapy or the control group. HA therapy was initiated intraoperatively and continued for 24 hours postoperatively. Cytokine levels (IL-6, IL-1b, TNF-α), leukocytes, C-reactive protein (CRP), and Procalcitonin (PCT) as well as catecholamine support, and volume requirement were compared between both groups. Operative procedures included aortic (n = 7), mitral (n = 6), and multiple valve surgery (n = 7). All patients survived to discharge. No significant differences concerning median cytokine levels (IL-6 and TNF-α) were observed between both groups. CRP and PCT baseline levels were significantly higher in the HA group (59.5 vs. 26.3 mg/dL, P = .029 and 0.17 vs. 0.05 µg/L, P = .015) equalizing after surgery. Patients in the HA group required significantly higher doses of vasopressors (0.093 vs. 0.025 µg/kg/min norepinephrine, P = .029) at 12 hours postoperatively as well as significantly more overall volume replacement (7217 vs. 4185 mL at 12 hours, P = .015; 12 021 vs. 4850 mL at 48 hours, P = .015). HA therapy did neither result in a reduction of inflammatory parameters nor result in an improvement of hemodynamic parameters in patients operated for IE. For a more targeted use of HA therapy, appropriate selection criteria are required.}, language = {en} } @article{BelicPageLazariotouetal.2019, author = {Belic, Stanislav and Page, Lukas and Lazariotou, Maria and Waaga-Gasser, Ana Maria and Dragan, Mariola and Springer, Jan and Loeffler, Juergen and Morton, Charles Oliver and Einsele, Hermann and Ullmann, Andrew J. and Wurster, Sebastian}, title = {Comparative Analysis of Inflammatory Cytokine Release and Alveolar Epithelial Barrier Invasion in a Transwell® Bilayer Model of Mucormycosis}, series = {Frontiers in Microbiology}, volume = {9}, journal = {Frontiers in Microbiology}, doi = {10.3389/fmicb.2018.03204}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-252477}, year = {2019}, abstract = {Understanding the mechanisms of early invasion and epithelial defense in opportunistic mold infections is crucial for the evaluation of diagnostic biomarkers and novel treatment strategies. Recent studies revealed unique characteristics of the immunopathology of mucormycoses. We therefore adapted an alveolar Transwell® A549/HPAEC bilayer model for the assessment of epithelial barrier integrity and cytokine response to Rhizopus arrhizus, Rhizomucor pusillus, and Cunninghamella bertholletiae. Hyphal penetration of the alveolar barrier was validated by 18S ribosomal DNA detection in the endothelial compartment. Addition of dendritic cells (moDCs) to the alveolar compartment led to reduced fungal invasion and strongly enhanced pro-inflammatory cytokine response, whereas epithelial CCL2 and CCL5 release was reduced. Despite their phenotypic heterogeneity, the studied Mucorales species elicited the release of similar cytokine patterns by epithelial and dendritic cells. There were significantly elevated lactate dehydrogenase concentrations in the alveolar compartment and epithelial barrier permeability for dextran blue of different molecular weights in Mucorales-infected samples compared to Aspergillus fumigatus infection. Addition of monocyte-derived dendritic cells further aggravated LDH release and epithelial barrier permeability, highlighting the influence of the inflammatory response in mucormycosis-associated tissue damage. An important focus of this study was the evaluation of the reproducibility of readout parameters in independent experimental runs. Our results revealed consistently low coefficients of variation for cytokine concentrations and transcriptional levels of cytokine genes and cell integrity markers. As additional means of model validation, we confirmed that our bilayer model captures key principles of Mucorales biology such as accelerated growth in a hyperglycemic or ketoacidotic environment or reduced epithelial barrier invasion upon epithelial growth factor receptor blockade by gefitinib. Our findings indicate that the Transwell® bilayer model provides a reliable and reproducible tool for assessing host response in mucormycosis.}, language = {en} } @article{ChopraLangSalzmannetal.2013, author = {Chopra, Martin and Lang, Isabell and Salzmann, Steffen and Pachel, Christina and Kraus, Sabrina and B{\"a}uerlein, Carina A. and Brede, Christian and Jord{\´a}n Garrote, Ana-Laura and Mattenheimer, Katharina and Ritz, Miriam and Schwinn, Stefanie and Graf, Carolin and Sch{\"a}fer, Viktoria and Frantz, Stefan and Einsele, Hermann and Wajant, Harald and Beilhack, Andreas}, title = {Tumor Necrosis Factor Induces Tumor Promoting and Anti-Tumoral Effects on Pancreatic Cancer via TNFR1}, series = {PLoS ONE}, journal = {PLoS ONE}, doi = {10.1371/journal.pone.0075737}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-97246}, year = {2013}, abstract = {Multiple activities are ascribed to the cytokine tumor necrosis factor (TNF) in health and disease. In particular, TNF was shown to affect carcinogenesis in multiple ways. This cytokine acts via the activation of two cell surface receptors, TNFR1, which is associated with inflammation, and TNFR2, which was shown to cause anti-inflammatory signaling. We assessed the effects of TNF and its two receptors on the progression of pancreatic cancer by in vivo bioluminescence imaging in a syngeneic orthotopic tumor mouse model with Panc02 cells. Mice deficient for TNFR1 were unable to spontaneously reject Panc02 tumors and furthermore displayed enhanced tumor progression. In contrast, a fraction of wild type (37.5\%), TNF deficient (12.5\%), and TNFR2 deficient mice (22.2\%) were able to fully reject the tumor within two weeks. Pancreatic tumors in TNFR1 deficient mice displayed increased vascular density, enhanced infiltration of CD4+ T cells and CD4+ forkhead box P3 (FoxP3)+ regulatory T cells (Treg) but reduced numbers of CD8+ T cells. These alterations were further accompanied by transcriptional upregulation of IL4. Thus, TNF and TNFR1 are required in pancreatic ductal carcinoma to ensure optimal CD8+ T cell-mediated immunosurveillance and tumor rejection. Exogenous systemic administration of human TNF, however, which only interacts with murine TNFR1, accelerated tumor progression. This suggests that TNFR1 has basically the capability in the Panc02 model to trigger pro-and anti-tumoral effects but the spatiotemporal availability of TNF seems to determine finally the overall outcome.}, language = {en} } @article{DemchukMuellerOschkinatetal.1994, author = {Demchuk, E. and Mueller, T. and Oschkinat, H. and Sebald, Walter and Wade, R. C.}, title = {Receptor binding properties of four-helix-bundle growth factors deduced from electrostatic analysis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-62424}, year = {1994}, abstract = {Hormones of the hematopoietin class mediate signal transduction by binding to specific transmembrane receptors. Structural data show that the human growth hormone (hGH) forms a complex with a homodimeric receptor and that hGH is a member of a class of hematopoietins possessing an antiparallel 4-a-helix bundle fold. Mutagenesis experiments suggest that electrostatic interactions may have an important influence on hormonereceptor recognition. In order to examine the specificity of hormone-receptor complexation, an analysis was made of the electrostatic potentials of hGH, interleukin-2 (IL-2), interleukin-4 (IL-4), granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), and the hGH and IL-4 receptors. The binding surfaces of hGH and its receptor, and of IL-4 and its receptor, show complementary electrostatic potentials. The potentials of the hGH and its receptor display approximately 2-fold rotational symmetry because the receptor subunits are identical. In contrast, the potentials of GM-CSF and IL-2 Iack such symmetry, consistent with their known high affinity for hetero-oligomeric receptors. Analysis of the electrostatic potentials supports a recently proposed hetero-oligomeric model for a high-affinity IL-4 receptor and suggests a possible new receptor binding mode for G-CSF; it also provides valuable information for guiding structural and mutagenesis studies of signal-transducing proteins and their receptors.}, subject = {Biochemie}, language = {en} } @article{EnigkWagnerSamapatietal.2014, author = {Enigk, Fabian and Wagner, Antje and Samapati, Rudi and Rittner, Heike and Brack, Alexander and Mousa, Shaaban A. and Sch{\"a}fer, Michael and Habazettl, Helmut and Sch{\"a}per, J{\"o}rn}, title = {Thoracic epidural anesthesia decreases endotoxin-induced endothelial injury}, series = {BMC Anesthesiology}, volume = {14}, journal = {BMC Anesthesiology}, number = {23}, doi = {10.1186/1471-2253-14-23}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-116787}, year = {2014}, abstract = {Background: The sympathetic nervous system is considered to modulate the endotoxin-induced activation of immune cells. Here we investigate whether thoracic epidural anesthesia with its regional symapathetic blocking effect alters endotoxin-induced leukocyte-endothelium activation and interaction with subsequent endothelial injury. Methods: Sprague Dawley rats were anesthetized, cannulated and hemodynamically monitored. E. coli lipopolysaccharide (Serotype 0127: B8, 1.5 mg x kg(-1) x h(-1)) or isotonic saline (controls) was infused for 300 minutes. An epidural catheter was inserted for continuous application of lidocaine or normal saline in endotoxemic animals and saline in controls. After 300 minutes we measured catecholamine and cytokine plasma concentrations, adhesion molecule expression, leukocyte adhesion, and intestinal tissue edema. Results: In endotoxemic animals with epidural saline, LPS significantly increased the interleukin-1 beta plasma concentration (48\%), the expression of endothelial adhesion molecules E-selectin (34\%) and ICAM-1 (42\%), and the number of adherent leukocytes (40\%) with an increase in intestinal myeloperoxidase activity (26\%) and tissue edema (75\%) when compared to healthy controls. In endotoxemic animals with epidural infusion of lidocaine the values were similar to those in control animals, while epinephrine plasma concentration was 32\% lower compared to endotoxemic animals with epidural saline. Conclusions: Thoracic epidural anesthesia attenuated the endotoxin-induced increase of IL-1 beta concentration, adhesion molecule expression and leukocyte-adhesion with subsequent endothelial injury. A potential mechanism is the reduction in the plasma concentration of epinephrine.}, language = {en} } @article{FehrholzGlaserSeidenspinneretal.2016, author = {Fehrholz, Markus and Glaser, Kirsten and Seidenspinner, Silvia and Ottensmeier, Barbara and Curstedt, Tore and Speer, Christian P. and Kunzmann, Steffen}, title = {Impact of the New Generation Reconstituted Surfactant CHF5633 on Human CD4\(^+\) Lymphocytes}, series = {PLoS One}, volume = {11}, journal = {PLoS One}, number = {4}, doi = {10.1371/journal.pone.0153578}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146419}, pages = {e0153578}, year = {2016}, abstract = {Background Natural surfactant preparations, commonly isolated from porcine or bovine lungs, are used to treat respiratory distress syndrome in preterm infants. Besides biophysical effectiveness, several studies have documented additional immunomodulatory properties. Within the near future, synthetic surfactant preparations may be a promising alternative. CHF5633 is a new generation reconstituted synthetic surfactant preparation with defined composition, containing dipalmitoyl-phosphatidylcholine, palmitoyl-oleoyl-phosphatidylglycerol and synthetic analogs of surfactant protein (SP-) B and SP-C. While its biophysical effectiveness has been demonstrated in vitro and in vivo, possible immunomodulatory abilities are currently unknown. Aim The aim of the current study was to define a potential impact of CHF5633 and its single components on pro- and anti-inflammatory cytokine responses in human CD4\(^+\) lymphocytes. Methods Purified human CD4\(^+\) T cells were activated using anti CD3/CD28 antibodies and exposed to CHF5633, its components, or to the well-known animal-derived surfactant Poractant alfa (Curosurf®). Proliferative response and cell viability were assessed using flow cytometry and a methylthiazolyldiphenyltetrazolium bromide colorimetric assay. The mRNA expression of IFNγ, IL-2, IL-17A, IL-22, IL-4, and IL-10 was measured by quantitative PCR, while intracellular protein expression was assessed by means of flow cytometry. Results Neither CHF5633 nor any of its phospholipid components with or without SP-B or SP-C analogs had any influence on proliferative ability and viability of CD4\(^+\) lymphocytes under the given conditions. IFNγ, IL-2, IL-17A, IL-22, IL-4, and IL-10 mRNA as well as IFNγ, IL-2, IL-4 and IL-10 protein levels were unaffected in both non-activated and activated CD4+ lymphocytes after exposure to CHF5633 or its constituents compared to non-exposed controls. However, in comparison to Curosurf®, expression levels of anti-inflammatory IL-4 and IL-10 mRNA were significantly increased in CHF5633 exposed CD4\(^+\) lymphocytes. Conclusion For the first time, the immunomodulatory capacity of CHF5633 on CD4\(^+\) lymphocytes was evaluated. CHF5633 did not show any cytotoxicity on CD4\(^+\) cells. Moreover, our in vitro data indicate that CHF5633 does not exert unintended pro-inflammatory effects on non-activated and activated CD4+ T cells. As far as anti-inflammatory cytokines are concerned, it might lack an overall reductive ability in comparison to animal-derived surfactants, potentially leaving pro- and anti-inflammatory cytokine response in balance.}, language = {en} } @article{FiedlerMuellenbachRolfesetal.2022, author = {Fiedler, Mascha O. and Muellenbach, Ralf M. and Rolfes, Caroline and Lotz, Christopher and Nickel, Felix and M{\"u}ller-Stich, Beat P. and Supady, Alexander and Lepper, Philipp M. and Weigand, Markus A. and Meybohm, Patrick and Kalenka, Armin and Reyher, Christian}, title = {Pumpless extracorporeal hemadsorption technique (pEHAT): a proof-of-concept animal study}, series = {Journal of Clinical Medicine}, volume = {11}, journal = {Journal of Clinical Medicine}, number = {22}, issn = {2077-0383}, doi = {10.3390/jcm11226815}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-297347}, year = {2022}, abstract = {Background: Extracorporeal hemadsorption eliminates proinflammatory mediators in critically ill patients with hyperinflammation. The use of a pumpless extracorporeal hemadsorption technique allows its early usage prior to organ failure and the need for an additional medical device. In our animal model, we investigated the feasibility of pumpless extracorporeal hemadsorption over a wide range of mean arterial pressures (MAP). Methods: An arteriovenous shunt between the femoral artery and femoral vein was established in eight pigs. The hemadsorption devices were inserted into the shunt circulation; four pigs received CytoSorb\(^®\) and four Oxiris\(^®\) hemadsorbers. Extracorporeal blood flow was measured in a range between mean arterial pressures of 45-85 mmHg. Mean arterial pressures were preset using intravenous infusions of noradrenaline, urapidil, or increased sedatives. Results: Extracorporeal blood flows remained well above the minimum flows recommended by the manufacturers throughout all MAP steps for both devices. Linear regression resulted in CytoSorb\(^®\) blood flow [mL/min] = 4.226 × MAP [mmHg] - 3.496 (R-square 0.8133) and Oxiris\(^®\) blood flow [mL/min] = 3.267 × MAP [mmHg] + 57.63 (R-square 0.8708), respectively. Conclusion: Arteriovenous pumpless extracorporeal hemadsorption resulted in sufficient blood flows through both the CytoSorb\(^®\) and Oxiris\(^®\) devices over a wide range of mean arterial blood pressures and is likely an intriguing therapeutic option in the early phase of septic shock or hyperinflammatory syndromes.}, language = {en} } @article{GernertTonySchwaneketal.2022, author = {Gernert, Michael and Tony, Hans-Peter and Schwanek, Eva Christina and Gadeholt, Ottar and Fr{\"o}hlich, Matthias and Portegys, Jan and Strunz, Patrick-Pascal and Schmalzing, Marc}, title = {Lymphocyte subsets in the peripheral blood are disturbed in systemic sclerosis patients and can be changed by immunosuppressive medication}, series = {Rheumatology International}, volume = {42}, journal = {Rheumatology International}, number = {8}, issn = {1437-160X}, doi = {10.1007/s00296-021-05034-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-266482}, pages = {1373-1381}, year = {2022}, abstract = {Systemic sclerosis (SSc) is a severe chronic disease with a broad spectrum of clinical manifestations. SSc displays disturbed lymphocyte homeostasis. Immunosuppressive medications targeting T or B cells can improve disease manifestations. SSc clinical manifestations and immunosuppressive medication in itself can cause changes in lymphocyte subsets. The aim of this study was to investigate peripheral lymphocyte homeostasis in SSc with regards to the immunosuppression and to major organ involvement. 44 SSc patients and 19 healthy donors (HD) were included. Immunophenotyping of peripheral whole blood by fluorescence-activated cell sorting was performed. Cytokine secretions of stimulated B cell cultures were measured. SSc patients without immunosuppression compared to HD displayed lower γδ T cells, lower T helper cells (CD3+/CD4+), lower transitional B cells (CD19+/CD38++/CD10+/IgD+), lower pre-switched memory B cells (CD19+/CD27+/IgD+), and lower post-switched memory B cells (CD19+/CD27+/IgD-). There was no difference in the cytokine production of whole B cell cultures between SSc and HD. Within the SSc cohort, mycophenolate intake was associated with lower T helper cells and lower NK cells (CD56+/CD3-). The described differences in peripheral lymphocyte subsets between SSc and HD generate further insight in SSc pathogenesis. Lymphocyte changes under effective immunosuppression indicate how lymphocyte homeostasis in SSc might be restored.}, language = {en} } @article{GlaserFehrholzCurstedtetal.2016, author = {Glaser, Kirsten and Fehrholz, Markus and Curstedt, Tore and Kunzmann, Steffen and Speer, Christian P.}, title = {Effects of the New Generation Synthetic Reconstituted Surfactant CHF5633 on Pro- and Anti-Inflammatory Cytokine Expression in Native and LPS-Stimulated Adult CD14\(^{+}\) Monocytes}, series = {PLoS ONE}, volume = {11}, journal = {PLoS ONE}, number = {1}, doi = {10.1371/journal.pone.0146898}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-180195}, year = {2016}, abstract = {Background Surfactant replacement therapy is the standard of care for the prevention and treatment of neonatal respiratory distress syndrome. New generation synthetic surfactants represent a promising alternative to animal-derived surfactants. CHF5633, a new generation reconstituted synthetic surfactant containing SP-B and SP-C analogs and two synthetic phospholipids has demonstrated biophysical effectiveness in vitro and in vivo. While several surfactant preparations have previously been ascribed immunomodulatory capacities, in vitro data on immunomodulation by CHF5633 are limited, so far. Our study aimed to investigate pro- and anti-inflammatory effects of CHF5633 on native and LPS-stimulated human adult monocytes. Methods Highly purified adult CD14\(^{+}\) cells, either native or simultaneously stimulated with LPS, were exposed to CHF5633, its components, or poractant alfa (Curosurf\(^{®}\)). Subsequent expression of TNF-α, IL-1β, IL-8 and IL-10 mRNA was quantified by real-time quantitative PCR, corresponding intracellular cytokine synthesis was analyzed by flow cytometry. Potential effects on TLR2 and TLR4 mRNA and protein expression were monitored by qPCR and flow cytometry. Results Neither CHF5633 nor any of its components induced inflammation or apoptosis in native adult CD14\(^{+}\) monocytes. Moreover, LPS-induced pro-inflammatory responses were not aggravated by simultaneous exposure of monocytes to CHF5633 or its components. In LPS-stimulated monocytes, exposure to CHF5633 led to a significant decrease in TNF-α mRNA (0.57 ± 0.23-fold, p = 0.043 at 4h; 0.56 ± 0.27-fold, p = 0.042 at 14h). Reduction of LPS-induced IL-1β mRNA expression was not significant (0.73 ± 0.16, p = 0.17 at 4h). LPS-induced IL-8 and IL-10 mRNA and protein expression were unaffected by CHF5633. For all cytokines, the observed CHF5633 effects paralleled a Curosurf®-induced modulation of cytokine response. TLR2 and TLR4 mRNA and protein expression were not affected by CHF5633 and Curosurf®, neither in native nor in LPS-stimulated adult monocytes. Conclusion The new generation reconstituted synthetic surfactant CHF5633 was tested for potential immunomodulation on native and LPS-activated adult human monocytes. Our data confirm that CHF5633 does not exert unintended pro-inflammatory effects in both settings. On the contrary, CHF5633 significantly suppressed TNF-α mRNA expression in LPS-stimulated adult monocytes, indicating potential anti-inflammatory effects.}, language = {en} } @article{GlaserKernSpeeretal.2023, author = {Glaser, Kirsten and Kern, David and Speer, Christian P. and Schlegel, Nicolas and Schwab, Michael and Thome, Ulrich H. and H{\"a}rtel, Christoph and Wright, Clyde J.}, title = {Imbalanced inflammatory responses in preterm and term cord blood monocytes and expansion of the CD14\(^+\)CD16\(^+\) subset upon toll-like receptor stimulation}, series = {International Journal of Molecular Sciences}, volume = {24}, journal = {International Journal of Molecular Sciences}, number = {5}, issn = {1422-0067}, doi = {10.3390/ijms24054919}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-311056}, year = {2023}, abstract = {Developmentally regulated features of innate immunity are thought to place preterm and term infants at risk of infection and inflammation-related morbidity. Underlying mechanisms are incompletely understood. Differences in monocyte function including toll-like receptor (TLR) expression and signaling have been discussed. Some studies point to generally impaired TLR signaling, others to differences in individual pathways. In the present study, we assessed mRNA and protein expression of pro- and anti-inflammatory cytokines in preterm and term cord blood (CB) monocytes compared with adult controls stimulated ex vivo with Pam3CSK4, zymosan, polyinosinic:polycytidylic acid, lipopolysaccharide, flagellin, and CpG oligonucleotide, which activate the TLR1/2, TLR2/6, TLR3, TLR4, TLR5, and TLR9 pathways, respectively. In parallel, frequencies of monocyte subsets, stimulus-driven TLR expression, and phosphorylation of TLR-associated signaling molecules were analyzed. Independent of stimulus, pro-inflammatory responses of term CB monocytes equaled adult controls. The same held true for preterm CB monocytes—except for lower IL-1β levels. In contrast, CB monocytes released lower amounts of anti-inflammatory IL-10 and IL-1ra, resulting in higher ratios of pro-inflammatory to anti-inflammatory cytokines. Phosphorylation of p65, p38, and ERK1/2 correlated with adult controls. However, stimulated CB samples stood out with higher frequencies of intermediate monocytes (CD14\(^+\)CD16\(^+\)). Both pro-inflammatory net effect and expansion of the intermediate subset were most pronounced upon stimulation with Pam3CSK4 (TLR1/2), zymosan (TR2/6), and lipopolysaccharide (TLR4). Our data demonstrate robust pro-inflammatory and yet attenuated anti-inflammatory responses in preterm and term CB monocytes, along with imbalanced cytokine ratios. Intermediate monocytes, a subset ascribed pro-inflammatory features, might participate in this inflammatory state.}, language = {en} } @article{HofmannFrantz2013, author = {Hofmann, Ulrich and Frantz, Stefan}, title = {How can we cure a heart "in flame"? A translational view on inflammation in heart failure}, series = {Basic Research in Cardiology}, volume = {108}, journal = {Basic Research in Cardiology}, number = {356}, doi = {10.1007/s00395-013-0356-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-134497}, year = {2013}, abstract = {The prevalence of chronic heart failure is still increasing making it a major health issue in the 21st century. Tremendous evidence has emerged over the past decades that heart failure is associated with a wide array of mechanisms subsumed under the term "inflammation". Based on the great success of immuno-suppressive treatments in auto-immunity and transplantation, clinical trials were launched targeting inflammatory mediators in patients with chronic heart failure. However, they widely lacked positive outcomes. The failure of the initial study program directed against tumor necrosis factor-a led to the search for alternative therapeutic targets involving a broader spectrum of mechanisms besides cytokines. We here provide an overview of the current knowledge on immune activation in chronic heart failure of different etiologies, summarize clinical studies in the field, address unresolved key questions, and highlight some promising novel therapeutic targets for clinical trials from a translational basic science and clinical perspective.}, language = {en} } @article{KarulinKaracsonyZhangetal.2015, author = {Karulin, Alexey Y. and Karacsony, Kinga and Zhang, Wenji and Targoni, Oleg S. and Moldova, Ioana and Dittrich, Marcus and Sundararaman, Srividya and Lehmann, Paul V.}, title = {ELISPOTs produced by CD8 and CD4 cells follow Log Normal size distribution permitting objective counting}, series = {Cells}, volume = {4}, journal = {Cells}, number = {1}, doi = {10.3390/cells4010056}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-149648}, pages = {56-70}, year = {2015}, abstract = {Each positive well in ELISPOT assays contains spots of variable sizes that can range from tens of micrometers up to a millimeter in diameter. Therefore, when it comes to counting these spots the decision on setting the lower and the upper spot size thresholds to discriminate between non-specific background noise, spots produced by individual T cells, and spots formed by T cell clusters is critical. If the spot sizes follow a known statistical distribution, precise predictions on minimal and maximal spot sizes, belonging to a given T cell population, can be made. We studied the size distributional properties of IFN-γ, IL-2, IL-4, IL-5 and IL-17 spots elicited in ELISPOT assays with PBMC from 172 healthy donors, upon stimulation with 32 individual viral peptides representing defined HLA Class I-restricted epitopes for CD8 cells, and with protein antigens of CMV and EBV activating CD4 cells. A total of 334 CD8 and 80 CD4 positive T cell responses were analyzed. In 99.7\% of the test cases, spot size distributions followed Log Normal function. These data formally demonstrate that it is possible to establish objective, statistically validated parameters for counting T cell ELISPOTs.}, language = {en} } @article{KleefeldtBoemmelBroedeetal.2019, author = {Kleefeldt, Florian and B{\"o}mmel, Heike and Broede, Britta and Thomsen, Michael and Pfeiffer, Verena and W{\"o}rsd{\"o}rfer, Philipp and Karnati, Srikanth and Wagner, Nicole and Rueckschloss, Uwe and Erg{\"u}n, S{\"u}leyman}, title = {Aging-related carcinoembryonic antigen-related cell adhesion molecule 1 signaling promotes vascular dysfunction}, series = {Aging Cell}, volume = {2019}, journal = {Aging Cell}, number = {18}, doi = {10.1111/acel.13025}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201231}, pages = {e13025}, year = {2019}, abstract = {Aging is an independent risk factor for cardiovascular diseases and therefore of particular interest for the prevention of cardiovascular events. However, the mechanisms underlying vascular aging are not well understood. Since carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is crucially involved in vascular homeostasis, we sought to identify the role of CEACAM1 in vascular aging. Using human internal thoracic artery and murine aorta, we show that CEACAM1 is upregulated in the course of vascular aging. Further analyses demonstrated that TNF-α is CEACAM1-dependently upregulated in the aging vasculature. Vice versa, TNF-α induces CEACAM1 expression. This results in a feed-forward loop in the aging vasculature that maintains a chronic pro-inflammatory milieu. Furthermore, we demonstrate that age-associated vascular alterations, that is, increased oxidative stress and vascular fibrosis, due to increased medial collagen deposition crucially depend on the presence of CEACAM1. Additionally, age-dependent upregulation of vascular CEACAM1 expression contributes to endothelial barrier impairment, putatively via increased VEGF/VEGFR-2 signaling. Consequently, aging-related upregulation of vascular CEACAM1 expression results in endothelial dysfunction that may promote atherosclerotic plaque formation in the presence of additional risk factors. Our data suggest that CEACAM1 might represent an attractive target in order to delay physiological aging and therefore the transition to vascular disorders such as atherosclerosis.}, language = {en} } @article{KressEgenolfSommeretal.2023, author = {Kreß, Luisa and Egenolf, Nadine and Sommer, Claudia and {\"U}{\c{c}}eyler, Nurcan}, title = {Cytokine expression profiles in white blood cells of patients with small fiber neuropathy}, series = {BMC Neuroscience}, volume = {24}, journal = {BMC Neuroscience}, number = {1}, doi = {10.1186/s12868-022-00770-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300619}, year = {2023}, abstract = {Background The role of cytokines in the pathophysiology, diagnosis, and prognosis of small fiber neuropathy (SFN) is incompletely understood. We studied expression profiles of selected pro- and anti-inflammatory cytokines in RNA from white blood cells (WBC) of patients with a medical history and a clinical phenotype suggestive for SFN and compared data with healthy controls. Methods We prospectively recruited 52 patients and 21 age- and sex-matched healthy controls. Study participants were characterized in detail and underwent complete neurological examination. Venous blood was drawn for routine and extended laboratory tests, and for WBC isolation. Systemic RNA expression profiles of the pro-inflammatory cytokines interleukin (IL)-1ß, IL-2, IL-8, tumor necrosis factor-alpha (TNF) and the anti-inflammatory cytokines IL-4, IL-10, transforming growth factor beta-1 (TGF) were analyzed. Protein levels of IL-2, IL-8, and TNF were measured in serum of patients and controls. Receiver operating characteristic (ROC)-curve analysis was used to determine the accuracy of IL-2, IL-8, and TNF in differentiating patients and controls. To compare the potential discriminatory efficacy of single versus combined cytokines, equality of different AUCs was tested. Results WBC gene expression of IL-2, IL-8, and TNF was higher in patients compared to healthy controls (IL-2: p = 0.02; IL-8: p = 0.009; TNF: p = 0.03) and discriminated between the groups (area under the curve (AUC) ≥ 0.68 for each cytokine) with highest diagnostic accuracy reached by combining the three cytokines (AUC = 0.81, sensitivity = 70\%, specificity = 86\%). Subgroup analysis revealed the following differences: IL-8 and TNF gene expression levels were higher in female patients compared to female controls (IL-8: p = 0.01; TNF: p = 0.03). The combination of TNF with IL-2 and TNF with IL-2 and IL-8 discriminated best between the study groups. IL-2 was higher expressed in patients with moderate pain compared to those with severe pain (p = 0.02). Patients with acral pain showed higher IL-10 gene expression compared to patients with generalized pain (p = 0.004). We further found a negative correlation between the relative gene expression of IL-2 and current pain intensity (p = 0.02). Serum protein levels of IL-2, IL-8, and TNF did not differ between patients and controls. Conclusions We identified higher systemic gene expression of IL-2, IL-8, and TNF in SFN patients than in controls, which may be of potential relevance for diagnostics and patient stratification.}, language = {en} } @article{KuckaLangZhangetal.2021, author = {Kucka, Kirstin and Lang, Isabell and Zhang, Tengyu and Siegmund, Daniela and Medler, Juliane and Wajant, Harald}, title = {Membrane lymphotoxin-α\(_2\)β is a novel tumor necrosis factor (TNF) receptor 2 (TNFR2) agonist}, series = {Cell Death \& Disease}, volume = {12}, journal = {Cell Death \& Disease}, number = {4}, doi = {10.1038/s41419-021-03633-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260077}, pages = {360}, year = {2021}, abstract = {In the early 1990s, it has been described that LTα and LTβ form LTα\(_2\)β and LTαβ\(_2\) heterotrimers, which bind to TNFR1 and LTβR, respectively. Afterwards, the LTαβ\(_2\)-LTβR system has been intensively studied while the LTα\(_2\)β-TNFR1 interaction has been ignored to date, presumably due to the fact that at the time of identification of the LTα\(_2\)β-TNFR1 interaction one knew already two ligands for TNFR1, namely TNF and LTα. Here, we show that LTα\(_2\)β interacts not only with TNFR1 but also with TNFR2. We furthermore demonstrate that membrane-bound LTα\(_2\)β (memLTα\(_2\)β), despite its asymmetric structure, stimulates TNFR1 and TNFR2 signaling. Not surprising in view of its ability to interact with TNFR2, LTα\(_2\)β is inhibited by Etanercept, which is approved for the treatment of rheumatoid arthritis and also inhibits TNF and LTα.}, language = {en} } @article{LauruschkatEtterSchnacketal.2021, author = {Lauruschkat, Chris D. and Etter, Sonja and Schnack, Elisabeth and Ebel, Frank and Sch{\"a}uble, Sascha and Page, Lukas and R{\"u}mens, Dana and Dragan, Mariola and Schlegel, Nicolas and Panagiotou, Gianni and Kniemeyer, Olaf and Brakhage, Axel A. and Einsele, Hermann and Wurster, Sebastian and Loeffler, Juergen}, title = {Chronic occupational mold exposure drives expansion of Aspergillus-reactive type 1 and type 2 T-helper cell responses}, series = {Journal of Fungi}, volume = {7}, journal = {Journal of Fungi}, number = {9}, issn = {2309-608X}, doi = {10.3390/jof7090698}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-245202}, year = {2021}, abstract = {Occupational mold exposure can lead to Aspergillus-associated allergic diseases including asthma and hypersensitivity pneumonitis. Elevated IL-17 levels or disbalanced T-helper (Th) cell expansion were previously linked to Aspergillus-associated allergic diseases, whereas alterations to the Th cell repertoire in healthy occupationally exposed subjects are scarcely studied. Therefore, we employed functional immunoassays to compare Th cell responses to A. fumigatus antigens in organic farmers, a cohort frequently exposed to environmental molds, and non-occupationally exposed controls. Organic farmers harbored significantly higher A. fumigatus-specific Th-cell frequencies than controls, with comparable expansion of Th1- and Th2-cell frequencies but only slightly elevated Th17-cell frequencies. Accordingly, Aspergillus antigen-induced Th1 and Th2 cytokine levels were strongly elevated, whereas induction of IL-17A was minimal. Additionally, increased levels of some innate immune cell-derived cytokines were found in samples from organic farmers. Antigen-induced cytokine release combined with Aspergillus-specific Th-cell frequencies resulted in high classification accuracy between organic farmers and controls. Aspf22, CatB, and CipC elicited the strongest differences in Th1 and Th2 responses between the two cohorts, suggesting these antigens as potential candidates for future bio-effect monitoring approaches. Overall, we found that occupationally exposed agricultural workers display a largely balanced co-expansion of Th1 and Th2 immunity with only minor changes in Th17 responses.}, language = {en} } @article{LauruschkatPageWhiteetal.2021, author = {Lauruschkat, Chris D. and Page, Lukas and White, P. Lewis and Etter, Sonja and Davies, Helen E. and Duckers, Jamie and Ebel, Frank and Schnack, Elisabeth and Backx, Matthijs and Dragan, Mariola and Schlegel, Nicolas and Kniemeyer, Olaf and Brakhage, Axel A. and Einsele, Hermann and Loeffler, Juergen and Wurster, Sebastian}, title = {Development of a simple and robust whole blood assay with dual co-stimulation to quantify the release of T-cellular signature cytokines in response to Aspergillus fumigatus antigens}, series = {Journal of Fungi}, volume = {7}, journal = {Journal of Fungi}, number = {6}, issn = {2309-608X}, doi = {10.3390/jof7060462}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-241025}, year = {2021}, abstract = {Deeper understanding of mold-induced cytokine signatures could promote advances in the diagnosis and treatment of invasive mycoses and mold-associated hypersensitivity syndromes. Currently, most T-cellular immunoassays in medical mycology require the isolation of mononuclear cells and have limited robustness and practicability, hampering their broader applicability in clinical practice. Therefore, we developed a simple, cost-efficient whole blood (WB) assay with dual α-CD28 and α-CD49d co-stimulation to quantify cytokine secretion in response to Aspergillus fumigatus antigens. Dual co-stimulation strongly enhanced A. fumigatus-induced release of T-cellular signature cytokines detectable by enzyme-linked immunosorbent assay (ELISA) or a multiplex cytokine assay. Furthermore, T-cell-dependent activation and cytokine response of innate immune cells was captured by the assay. The protocol consistently showed little technical variation and high robustness to pre-analytic delays of up to 8 h. Stimulation with an A. fumigatus lysate elicited at least 7-fold greater median concentrations of key T-helper cell signature cytokines, including IL-17 and the type 2 T-helper cell cytokines IL-4 and IL-5 in WB samples from patients with Aspergillus-associated lung pathologies versus patients with non-mold-related lung diseases, suggesting high discriminatory power of the assay. These results position WB-ELISA with dual co-stimulation as a simple, accurate, and robust immunoassay for translational applications, encouraging further evaluation as a platform to monitor host immunity to opportunistic pathogens.}, language = {en} } @article{LiuMcDonnellYoungetal.1993, author = {Liu, T. and McDonnell, PC and Young, PR and White, RF and Sir{\`e}n, Anna-Leena and Hallenbeck, JM and Barone, FC and Feuerstein, Giora}, title = {Interleukin-1ß mRNA expression in ischemic rat cortex}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-47442}, year = {1993}, abstract = {Background and Pur pose: Interleukin-1ß is a proinftammatory cytokine produced by blood-borne and resident brain inftammatory cells. The present study was conducted to determine if interleukin-1ß mRNA was produced in the brain of rats subjected to permanent focal ischemia. Methods: Rat interleukin-1ß cDNA, synthesized from stimulated rat peritoneal macrophage RNA by reverse transcription and polymerase chain reaction and c10ned in plasmid Bluescript KS+, was used to evaluate the expression of interleukin-1ß mRNA in cerebral cortex from spontaneously hypertensive rats and normotensive rats subjected to permanent middle cerebral artery occlusion. Interleukin-1ß mRNA was quantified by Northern blot analysis and compared with rat macrophage RNA standard. To correct for gel loading, blots were also analyzed with cyclophilin cDNA, which encodes an abundant, conserved protein that was unchanged by the experimental conditions. Results: Interleukin-1ß mRNA produced in the ischemic zone was significantly increased from 6 hours to 120 hours, with a maximum of211±24\% ofinterleukin-1ß reference standard, ie, 0.2 ng stimulated rat macrophage RNA, mRNA compared with the level in nonischemic cortices (4±2\%) at 12 hours after ischemia (P<.OI; n=6). Interleukin-1ß mRNA at 12 hours after ischemia was markedly elevated in hypertensive rats over levels found in two normotensive rat strains. Neurological deficits were also apparent only in the hypertensive rats. Conclusions: Brain interleukin-1ß mRNA is elevated acutely after permanent focal ischemia and especially in hypertensive rats. These data suggest that this potent proinflammatory and procoagulant cytokine might have a role in brain damage following ischemia.}, subject = {Gehirn}, language = {en} } @article{MasicHurdayalNieuwenhuizenetal.2012, author = {Masic, Anita and Hurdayal, Ramona and Nieuwenhuizen, Natalie E. and Brombacher, Frank and Moll, Heidrun}, title = {Dendritic Cell-Mediated Vaccination Relies on Interleukin-4 Receptor Signaling to Avoid Tissue Damage after Leishmania major Infection of BALB/c Mice}, series = {PLoS Neglected Tropical Diseases}, volume = {6}, journal = {PLoS Neglected Tropical Diseases}, number = {7}, doi = {10.1371/journal.pntd.0001721}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-133869}, year = {2012}, abstract = {Prevention of tissue damages at the site of Leishmania major inoculation can be achieved if the BALB/c mice are systemically given L. major antigen (LmAg)-loaded bone marrow-derived dendritic cells (DC) that had been exposed to CpG-containing oligodeoxynucleotides (CpG ODN). As previous studies allowed establishing that interleukin-4 (IL-4) is involved in the redirection of the immune response towards a type 1 profile, we were interested in further exploring the role of IL-4. Thus, wild-type (wt) BALB/c mice or DC-specific IL-4 receptor \(\alpha\) (IL-4R \(\alpha\))-deficient (CD11c\(^{cre}\)IL-4R \(\alpha^{-/lox}\) BALB/c mice were given either wt or IL-4R \(\alpha\)-deficient LmAg-loaded bone marrow-derived DC exposed or not to CpG ODN prior to inoculation of 2x10\(^5\) stationary-phase L. major promastigotes into the BALB/c footpad. The results provide evidence that IL4/IL-4R alpha-mediated signaling in the vaccinating DC is required to prevent tissue damage at the site of L. major inoculation, as properly conditioned wt DC but not IL-4R alpha-deficient DC were able to confer resistance. Furthermore, uncontrolled L. major population size expansion was observed in the footpad and the footpad draining lymph nodes of CD11c\(^{cre}\)IL-4R \(\alpha^{-/lox}\) mice immunized with CpG ODN-exposed LmAg-loaded IL-4R \(\alpha\)-deficient DC, indicating the influence of IL-4R \(\alpha\)-mediated signaling in host DC to control parasite replication. In addition, no footpad damage occurred in BALB/c mice that were systemically immunized with LmAg-loaded wt DC doubly exposed to CpG ODN and recombinant IL-4. We discuss these findings and suggest that the IL4/IL4R \(\alpha\) signaling pathway could be a key pathway to trigger when designing vaccines aimed to prevent damaging processes in tissues hosting intracellular microorganisms.}, language = {en} } @article{MeyerzuHoersteCordesMausbergetal.2014, author = {Meyer zu H{\"o}rste, Gerd and Cordes, Steffen and Mausberg, Anne K. and Zozulya, Alla L. and Wessig, Carsten and Sparwasser, Tim and Mathys, Christian and Wiendl, Heinz and Hartung, Hans-Peter and Kieseier, Bernd C.}, title = {FoxP3+Regulatory T Cells Determine Disease Severity in Rodent Models of Inflammatory Neuropathies}, series = {PLOS ONE}, volume = {9}, journal = {PLOS ONE}, number = {10}, doi = {10.1371/journal.pone.0108756}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-115239}, pages = {e108756}, year = {2014}, abstract = {Inflammatory neuropathies represent disabling human autoimmune disorders with considerable disease variability. Animal models provide insights into defined aspects of their disease pathogenesis. Forkhead box P3 (FoxP3)+ regulatory T lymphocytes (Treg) are anti-inflammatory cells that maintain immune tolerance and counteract tissue damage in a variety of immune-mediated disorders. Dysfunction or a reduced frequency of Tregs have been associated with different human autoimmune disorders. We here analyzed the functional relevance of Tregs in determining disease manifestation and severity in murine models of autoimmune neuropathies. We took advantage of the DEREG mouse system allowing depletion of Treg with high specificity as well as anti-CD25 directed antibodies to deplete Tregs in mice in actively induced experimental autoimmune neuritis (EAN). Furthermore antibody-depletion was performed in an adoptive transfer model of chronic neuritis. Early Treg depletion increased clinical EAN severity both in active and adoptive transfer chronic neuritis. This was accompanied by increased proliferation of myelin specific T cells and histological signs of peripheral nerve inflammation. Late stage Treg depletion after initial disease manifestation however did not exacerbate inflammatory neuropathy symptoms further. We conclude that Tregs determine disease severity in experimental autoimmune neuropathies during the initial priming phase, but have no major disease modifying function after disease manifestation. Potential future therapeutic approaches targeting Tregs should thus be performed early in inflammatory neuropathies.}, language = {en} } @article{NotzSchmalzingWedekinketal.2020, author = {Notz, Quirin and Schmalzing, Marc and Wedekink, Florian and Schlesinger, Tobias and Gernert, Michael and Herrmann, Johannes and Sorger, Lena and Weismann, Dirk and Schmid, Benedikt and Sitter, Magdalena and Schlegel, Nicolas and Kranke, Peter and Wischhusen, J{\"o}rg and Meybohm, Patrick and Lotz, Christopher}, title = {Pro- and Anti-Inflammatory Responses in Severe COVID-19-Induced Acute Respiratory Distress Syndrome—An Observational Pilot Study}, series = {Frontiers in Immunology}, volume = {11}, journal = {Frontiers in Immunology}, issn = {1664-3224}, doi = {10.3389/fimmu.2020.581338}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-212815}, year = {2020}, abstract = {Objectives The severity of Coronavirus Disease 2019 (COVID-19) is largely determined by the immune response. First studies indicate altered lymphocyte counts and function. However, interactions of pro- and anti-inflammatory mechanisms remain elusive. In the current study we characterized the immune responses in patients suffering from severe COVID-19-induced acute respiratory distress syndrome (ARDS). Methods This was a single-center retrospective study in patients admitted to the intensive care unit (ICU) with confirmed COVID-19 between March 14th and May 28th 2020 (n = 39). Longitudinal data were collected within routine clinical care, including flow-cytometry of lymphocyte subsets, cytokine analysis and growth differentiation factor 15 (GDF-15). Antibody responses against the receptor binding domain (RBD) of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Spike protein were analyzed. Results All patients suffered from severe ARDS, 30.8\% died. Interleukin (IL)-6 was massively elevated at every time-point. The anti-inflammatory cytokine IL-10 was concomitantly upregulated with IL-6. The cellular response was characterized by lymphocytopenia with low counts of CD8+ T cells, natural killer (NK) and na{\"i}ve T helper cells. CD8+ T and NK cells recovered after 8 to 14 days. The B cell system was largely unimpeded. This coincided with a slight increase in anti-SARS-CoV-2-Spike-RBD immunoglobulin (Ig) G and a decrease in anti-SARS-CoV-2-Spike-RBD IgM. GDF-15 levels were elevated throughout ICU treatment. Conclusions Massively elevated levels of IL-6 and a delayed cytotoxic immune defense characterized severe COVID-19-induced ARDS. The B cell response and antibody production were largely unimpeded. No obvious imbalance of pro- and anti-inflammatory mechanisms was observed, with elevated GDF-15 levels suggesting increased tissue resilience.}, language = {en} } @article{PachelMathesBayeretal.2013, author = {Pachel, Christina and Mathes, Denise and Bayer, Barbara and Dienesch, Charlotte and Wangorsch, Gaby and Heitzmann, Wolfram and Lang, Isabell and Ardehali, Hossein and Ertl, Georg and Dandekar, Thomas and Wajant, Harald and Frantz, Stefan}, title = {Exogenous Administration of a Recombinant Variant of TWEAK Impairs Healing after Myocardial Infarction by Aggravation of Inflammation}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {11}, doi = {10.1371/journal.pone.0078938}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-129889}, pages = {e78938}, year = {2013}, abstract = {Background: Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) and its receptor fibroblast growth factorinducible 14 (Fn14) are upregulated after myocardial infarction (MI) in both humans and mice. They modulate inflammation and the extracellular matrix, and could therefore be important for healing and remodeling after MI. However, the function of TWEAK after MI remains poorly defined. Methods and results: Following ligation of the left coronary artery, mice were injected twice per week with a recombinant human serum albumin conjugated variant of TWEAK (HSA-Flag-TWEAK), mimicking the activity of soluble TWEAK. Treatment with HSA-Flag-TWEAK resulted in significantly increased mortality in comparison to the placebo group due to myocardial rupture. Infarct size, extracellular matrix remodeling, and apoptosis rates were not different after MI. However, HSA-Flag-TWEAK treatment increased infiltration of proinflammatory cells into the myocardium. Accordingly, depletion of neutrophils prevented cardiac ruptures without modulating all-cause mortality. Conclusion: Treatment of mice with HSA-Flag-TWEAK induces myocardial healing defects after experimental MI. This is mediated by an exaggerated neutrophil infiltration into the myocardium.}, language = {en} } @article{PageWallstabeLotheretal.2021, author = {Page, Lukas and Wallstabe, Julia and Lother, Jasmin and Bauser, Maximilian and Kniemeyer, Olaf and Strobel, Lea and Voltersen, Vera and Teutschbein, Janka and Hortschansky, Peter and Morton, Charles Oliver and Brakhage, Axel A. and Topp, Max and Einsele, Hermann and Wurster, Sebastian and Loeffler, Juergen}, title = {CcpA- and Shm2-Pulsed Myeloid Dendritic Cells Induce T-Cell Activation and Enhance the Neutrophilic Oxidative Burst Response to Aspergillus fumigatus}, series = {Frontiers in Immunology}, volume = {12}, journal = {Frontiers in Immunology}, issn = {1664-3224}, doi = {10.3389/fimmu.2021.659752}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239493}, year = {2021}, abstract = {Aspergillus fumigatus causes life-threatening opportunistic infections in immunocompromised patients. As therapeutic outcomes of invasive aspergillosis (IA) are often unsatisfactory, the development of targeted immunotherapy remains an important goal. Linking the innate and adaptive immune system, dendritic cells are pivotal in anti-Aspergillus defense and have generated interest as a potential immunotherapeutic approach in IA. While monocyte-derived dendritic cells (moDCs) require ex vivo differentiation, antigen-pulsed primary myeloid dendritic cells (mDCs) may present a more immediate platform for immunotherapy. To that end, we compared the response patterns and cellular interactions of human primary mDCs and moDCs pulsed with an A. fumigatus lysate and two A. fumigatus proteins (CcpA and Shm2) in a serum-free, GMP-compliant medium. CcpA and Shm2 triggered significant upregulation of maturation markers in mDCs and, to a lesser extent, moDCs. Furthermore, both A. fumigatus proteins elicited the release of an array of key pro-inflammatory cytokines including TNF-α, IL-1β, IL-6, IL-8, and CCL3 from both DC populations. Compared to moDCs, CcpA- and Shm2-pulsed mDCs exhibited greater expression of MHC class II antigens and stimulated stronger proliferation and IFN-γ secretion from autologous CD4\(^+\) and CD8\(^+\) T-cells. Moreover, supernatants of CcpA- and Shm2-pulsed mDCs significantly enhanced the oxidative burst in allogeneic neutrophils co-cultured with A. fumigatus germ tubes. Taken together, our in vitro data suggest that ex vivo CcpA- and Shm2-pulsed primary mDCs have the potential to be developed into an immunotherapeutic approach to tackle IA.}, language = {en} } @article{RadevaWalterStachetal.2019, author = {Radeva, Mariya Y. and Walter, Elias and Stach, Ramona Alexandra and Yazdi, Amir S. and Schlegel, Nicolas and Sarig, Ofer and Sprecher, Eli and Waschke, Jens}, title = {ST18 Enhances PV-IgG-Induced Loss of Keratinocyte Cohesion in Parallel to Increased ERK Activation}, series = {Frontiers in Immunology}, volume = {10}, journal = {Frontiers in Immunology}, doi = {10.3389/fimmu.2019.00770}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-224910}, pages = {770, 1-11}, year = {2019}, abstract = {Pemphigus is an autoimmune blistering disease targeting the desmosomal proteins desmoglein (Dsg) 1 and Dsg3. Recently, a genetic variant of the Suppression of tumorigenicity 18 (ST18) promoter was reported to cause ST18 up-regulation, associated with pemphigus vulgaris (PV)-IgG-mediated increase in cytokine secretion and more prominent loss of keratinocyte cohesion. Here we tested the effects of PV-IgG and the pathogenic pemphigus mouse anti-Dsg3 antibody AK23 on cytokine secretion and ERK activity in human keratinocytes dependent on ST18 expression. Without ST18 overexpression, both PV-IgG and AK23 induced loss of keratinocyte cohesion which was accompanied by prominent fragmentation of Dsg3 immunostaining along cell borders. In contrast, release of pro-inflammatory cytokines such as IL-1 alpha, IL-6, TNF alpha, and IFN-gamma was not altered significantly in both HaCaT and primary NHEK cells. These experiments indicate that cytokine expression is not strictly required for loss of keratinocyte cohesion. Upon ST18 overexpression, fragmentation of cell monolayers increased significantly in response to autoantibody incubation. Furthermore, production of IL-1 alpha and IL-6 was enhanced in some experiments but not in others whereas release of TNF-alpha dropped significantly upon PV-IgG application in both EV- and ST18-transfected HaCaT cells. Additionally, in NHEK, application of PV-IgG but not of AK23 significantly increased ERK activity. In contrast, ST18 overexpression in HaCaT cells augmented ERK activation in response to both c-IgG and AK23 but not PV-IgG. Because inhibition of ERK by U0126 abolished PV-IgG- and AK23-induced loss of cell cohesion in ST18-expressing cells, we conclude that autoantibody-induced ERK activation was relevant in this scenario. In summary, similar to the situation in PV patients carrying ST18 polymorphism, overexpression of ST18 enhanced keratinocyte susceptibility to autoantibody-induced loss of cell adhesion, which may be caused in part by enhanced ERK signaling.}, language = {en} } @article{RittnerWangGehringeretal.2014, author = {Rittner, Heike L. and Wang, Ying and Gehringer, Rebekka and Mousa, Shaaban A. and Hackel, Dagmar and Brack, Alexander}, title = {CXCL10 Controls Inflammatory Pain via Opioid Peptide- Containing Macrophages in Electroacupuncture}, doi = {10.1371/journal.pone.0094696}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-112979}, year = {2014}, abstract = {Acupuncture is widely used for pain treatment in patients with osteoarthritis or low back pain, but molecular mechanisms remain largely enigmatic. In the early phase of inflammation neutrophilic chemokines direct opioid-containing neutrophils in the inflamed tissue and stimulate opioid peptide release and antinociception. In this study the molecular pathway and neuroimmune connections in complete Freund's adjuvant (CFA)-induced hind paw inflammation and electroacupuncture for peripheral pain control were analyzed. Free moving Wistar rats with hind paw inflammation were treated twice with electroacupuncture at GB30 (Huan Tiao - gall bladder meridian) (day 0 and 1) and analyzed for mechanical and thermal nociceptive thresholds. The cytokine profiles as well as the expression of opioid peptides were quantified in the inflamed paw. Electroacupuncture elicited long-term antinociception blocked by local injection of anti-opioid peptide antibodies (beta-endorphin, met-enkephalin, dynorphin A). The treatment altered the cytokine profile towards an anti-inflammatory pattern but augmented interferon (IFN)-gamma and the chemokine CXCL10 (IP-10: interferon gamma-inducible protein) protein and mRNA expression with concomitant increased numbers of opioid peptide-containing CXCR3+ macrophages. In rats with CFA hind paw inflammation without acupuncture repeated injection of CXCL10 triggered opioid-mediated antinociception and increase opioid-containing macrophages. Conversely, neutralization of CXCL10 time-dependently decreased electroacupuncture-induced antinociception and the number of infiltrating opioid peptide-expressing CXCR3+ macrophages. In summary, we describe a novel function of the chemokine CXCL10 - as a regulator for an increase of opioid-containing macrophages and antinociceptive mediator in inflammatory pain and as a key chemokine regulated by electroacupuncture.}, language = {en} } @article{RosenbaumSchickWollbornetal.2016, author = {Rosenbaum, Corinna and Schick, Martin Alexander and Wollborn, Jakob and Heider, Andreas and Scholz, Claus-J{\"u}rgen and Cecil, Alexander and Niesler, Beate and Hirrlinger, Johannes and Walles, Heike and Metzger, Marco}, title = {Activation of Myenteric Glia during Acute Inflammation In Vitro and In Vivo}, series = {PLoS One}, volume = {11}, journal = {PLoS One}, number = {3}, doi = {10.1371/journal.pone.0151335}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146544}, pages = {e0151335}, year = {2016}, abstract = {Background Enteric glial cells (EGCs) are the main constituent of the enteric nervous system and share similarities with astrocytes from the central nervous system including their reactivity to an inflammatory microenvironment. Previous studies on EGC pathophysiology have specifically focused on mucosal glia activation and its contribution to mucosal inflammatory processes observed in the gut of inflammatory bowel disease (IBD) patients. In contrast knowledge is scarce on intestinal inflammation not locally restricted to the mucosa but systemically affecting the intestine and its effect on the overall EGC network. Methods and Results In this study, we analyzed the biological effects of a systemic LPS-induced hyperinflammatory insult on overall EGCs in a rat model in vivo, mimicking the clinical situation of systemic inflammation response syndrome (SIRS). Tissues from small and large intestine were removed 4 hours after systemic LPS-injection and analyzed on transcript and protein level. Laser capture microdissection was performed to study plexus-specific gene expression alterations. Upon systemic LPS-injection in vivo we observed a rapid and dramatic activation of Glial Fibrillary Acidic Protein (GFAP)-expressing glia on mRNA level, locally restricted to the myenteric plexus. To study the specific role of the GFAP subpopulation, we established flow cytometry-purified primary glial cell cultures from GFAP promotor-driven EGFP reporter mice. After LPS stimulation, we analyzed cytokine secretion and global gene expression profiles, which were finally implemented in a bioinformatic comparative transcriptome analysis. Enriched GFAP+ glial cells cultured as gliospheres secreted increased levels of prominent inflammatory cytokines upon LPS stimulation. Additionally, a shift in myenteric glial gene expression profile was induced that predominantly affected genes associated with immune response. Conclusion and Significance Our findings identify the myenteric GFAP-expressing glial subpopulation as particularly susceptible and responsive to acute systemic inflammation of the gut wall and complement knowledge on glial involvement in mucosal inflammation of the intestine.}, language = {en} } @article{SchwarzRemerNahrendorfetal.2013, author = {Schwarz, Tobias and Remer, Katharina A. and Nahrendorf, Wiebke and Masic, Anita and Siewe, Lisa and M{\"u}ller, Werner and Roers, Axel and Moll, Heidrun}, title = {T Cell-Derived IL-10 Determines Leishmaniasis Disease Outcome and Is Suppressed by a Dendritic Cell Based Vaccine}, series = {PLoS Pathogens}, volume = {9}, journal = {PLoS Pathogens}, number = {6}, doi = {10.1371/journal.ppat.1003476}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130385}, pages = {e1003476}, year = {2013}, abstract = {Abstract In the murine model of Leishmania major infection, resistance or susceptibility to the parasite has been associated with the development of a Th1 or Th2 type of immune response. Recently, however, the immunosuppressive effects of IL-10 have been ascribed a crucial role in the development of the different clinical correlates of Leishmania infection in humans. Since T cells and professional APC are important cellular sources of IL-10, we compared leishmaniasis disease progression in T cell-specific, macrophage/neutrophil-specific and complete IL-10-deficient C57BL/6 as well as T cell-specific and complete IL-10-deficient BALB/c mice. As early as two weeks after infection of these mice with L. major, T cell-specific and complete IL-10-deficient animals showed significantly increased lesion development accompanied by a markedly elevated secretion of IFN-γ or IFN-γ and IL-4 in the lymph nodes draining the lesions of the C57BL/6 or BALB/c mutants, respectively. In contrast, macrophage/neutrophil-specific IL-10-deficient C57BL/6 mice did not show any altered phenotype. During the further course of disease, the T cell-specific as well as the complete IL-10-deficient BALB/c mice were able to control the infection. Furthermore, a dendritic cell-based vaccination against leishmaniasis efficiently suppresses the early secretion of IL-10, thus contributing to the control of parasite spread. Taken together, IL-10 secretion by T cells has an influence on immune activation early after infection and is sufficient to render BALB/c mice susceptible to an uncontrolled Leishmania major infection. Author Summary The clinical symptoms caused by infections with Leishmania parasites range from self-healing cutaneous to uncontrolled visceral disease and depend not only on the parasite species but also on the type of the host's immune response. It is estimated that 350 million people worldwide are at risk, with a global incidence of 1-1.5 million cases of cutaneous and 500,000 cases of visceral leishmaniasis. Murine leishmaniasis is the best-characterized model to elucidate the mechanisms underlying resistance or susceptibility to Leishmania major parasites in vivo. Using T cell-specific and macrophage-specific mutant mice, we demonstrate that abrogating the secretion of the immunosuppressive cytokine IL-10 by T cells is sufficient to render otherwise susceptible mice resistant to an infection with the pathogen. The healing phenotype is accompanied by an elevated specific inflammatory immune response very early after infection. We further show that dendritic cell-based vaccination against leishmaniasis suppresses the early secretion of IL-10 following challenge infection. Thus, our study unravels a molecular mechanism critical for host immune defense, aiding in the development of an effective vaccine against leishmaniasis.}, language = {en} } @article{SilvaVilchesPletinckxLohnertetal.2017, author = {Silva-Vilches, Cinthia and Pletinckx, Katrien and Lohnert, Miriam and Pavlovic, Vladimir and Ashour, Diyaaeldin and John, Vini and Vendelova, Emilia and Kneitz, Susanne and Zhou, Jie and Chen, Rena and Reinheckel, Thomas and Mueller, Thomas D. and Bodem, Jochen and Lutz, Manfred B.}, title = {Low doses of cholera toxin and its mediator cAMP induce CTLA-2 secretion by dendritic cells to enhance regulatory T cell conversion}, series = {PLoS ONE}, volume = {12}, journal = {PLoS ONE}, number = {7}, doi = {10.1371/journal.pone.0178114}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158244}, pages = {e0178114}, year = {2017}, abstract = {Immature or semi-mature dendritic cells (DCs) represent tolerogenic maturation stages that can convert naive T cells into Foxp3\(^{+}\) induced regulatory T cells (iTreg). Here we found that murine bone marrow-derived DCs (BM-DCs) treated with cholera toxin (CT) matured by up-regulating MHC-II and costimulatory molecules using either high or low doses of CT (CT\(^{hi}\), CT\(^{lo}\)) or with cAMP, a known mediator CT signals. However, all three conditions also induced mRNA of both isoforms of the tolerogenic molecule cytotoxic T lymphocyte antigen 2 (CTLA-2α and CTLA-2β). Only DCs matured under CT\(^{hi}\) conditions secreted IL-1β, IL-6 and IL-23 leading to the instruction of Th17 cell polarization. In contrast, CT\(^{lo}\)- or cAMP-DCs resembled semi-mature DCs and enhanced TGF-β-dependent Foxp3\(^{+}\) iTreg conversion. iTreg conversion could be reduced using siRNA blocking of CTLA-2 and reversely, addition of recombinant CTLA-2α increased iTreg conversion in vitro. Injection of CT\(^{lo}\)- or cAMP-DCs exerted MOG peptide-specific protective effects in experimental autoimmune encephalomyelitis (EAE) by inducing Foxp3\(^{+}\) Tregs and reducing Th17 responses. Together, we identified CTLA-2 production by DCs as a novel tolerogenic mediator of TGF-β-mediated iTreg induction in vitro and in vivo. The CT-induced and cAMP-mediated up-regulation of CTLA-2 also may point to a novel immune evasion mechanism of Vibrio cholerae.}, language = {en} } @article{SpitzelWagnerBreyeretal.2022, author = {Spitzel, Marlene and Wagner, Elise and Breyer, Maximilian and Henniger, Dorothea and Bayin, Mehtap and Hofmann, Lukas and Mauceri, Daniela and Sommer, Claudia and {\"U}{\c{c}}eyler, Nurcan}, title = {Dysregulation of immune response mediators and pain-related ion channels is associated with pain-like behavior in the GLA KO mouse model of Fabry disease}, series = {Cells}, volume = {11}, journal = {Cells}, number = {11}, issn = {2073-4409}, doi = {10.3390/cells11111730}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-275186}, year = {2022}, abstract = {Fabry disease (FD) is a rare life-threatening disorder caused by deficiency of the alpha-galactosidase A (GLA) enzyme with a characteristic pain phenotype. Impaired GLA production or function leads to the accumulation of the cell membrane compound globotriaosylceramide (Gb3) in the neurons of the dorsal root ganglia (DRG) of FD patients. Applying immunohistochemistry (IHC) and quantitative real-time polymerase chain reaction (qRT PCR) analysis on DRG tissue of the GLA knockout (KO) mouse model of FD, we address the question of how Gb3 accumulation may contribute to FD pain and focus on the immune system and pain-associated ion channel gene expression. We show a higher Gb3 load in the DRG of young (<6 months) (p < 0.01) and old (≥12 months) (p < 0.001) GLA KO mice compared to old wildtype (WT) littermates, and an overall suppressed immune response in the DRG of old GLA KO mice, represented by a reduced number of CD206\(^+\) macrophages (p < 0.01) and lower gene expression levels of the inflammation-associated targets interleukin(IL)1b (p < 0.05), IL10 (p < 0.001), glial fibrillary acidic protein (GFAP) (p < 0.05), and leucine rich alpha-2-glycoprotein 1 (LRG1) (p < 0.01) in the DRG of old GLA KO mice compared to old WT. Dysregulation of immune-related genes may be linked to lower gene expression levels of the pain-associated ion channels calcium-activated potassium channel 3.1 (KCa3.1) and transient receptor potential ankyrin 1 channel (TRPA1). Ion channel expression might further be disturbed by impaired sphingolipid recruitment mediated via the lipid raft marker flotillin-1 (FLOT1). This impairment is represented by an increased number of FLOT1\(^+\) DRG neurons with a membranous expression pattern in old GLA KO mice compared to young GLA KO, young WT, and old WT mice (p < 0.001 each). Further, we provide evidence for aberrant behavior of GLA KO mice, which might be linked to dysregulated ion channel gene expression levels and disturbed FLOT1 distribution patterns. Behavioral testing revealed mechanical hypersensitivity in young (p < 0.01) and old (p < 0.001) GLA KO mice compared to WT, heat hypersensitivity in young GLA KO mice (p < 0.001) compared to WT, age-dependent heat hyposensitivity in old GLA KO mice (p < 0.001) compared to young GLA KO mice, and cold hyposensitivity in young (p < 0.001) and old (p < 0.001) GLA KO mice compared to WT, which well reflects the clinical phenotype observed in FD patients.}, language = {en} } @article{UeceylerTopuzoğluSchiesseretal.2011, author = {{\"U}{\c{c}}eyler, Nurcan and Topuzoğlu, Teng{\"u} and Schießer, Peter and Hahnenkamp, Saskia and Sommer, Claudia}, title = {IL-4 Deficiency Is Associated with Mechanical Hypersensitivity in Mice}, series = {PLoS One}, volume = {6}, journal = {PLoS One}, number = {12}, doi = {10.1371/journal.pone.0028205}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-137924}, pages = {e28205}, year = {2011}, abstract = {Interleukin-4 (IL-4) is an anti-inflammatory and analgesic cytokine that induces opioid receptor transcription. We investigated IL-4 knockout (ko) mice to characterize their pain behavior before and after chronic constriction injury (CCI) of the sciatic nerve as a model for neuropathic pain. We investigated opioid responsivity and measured cytokine and opioid receptor gene expression in the peripheral and central nervous system (PNS, CNS) of IL-4 ko mice in comparison with wildtype (wt) mice. Na{\"i}ve IL-4 ko mice displayed tactile allodynia (wt: 0.45 g; ko: 0.18 g; p<0.001), while responses to heat and cold stimuli and to muscle pressure were not different. No compensatory changes in the gene expression of tumor necrosis factor-alpha (TNF), IL-1β, IL-10, and IL-13 were found in the PNS and CNS of na{\"i}ve IL-4 ko mice. However, IL-1β gene expression was stronger in the sciatic nerve of IL-4 ko mice (p<0.001) 28 days after CCI and only IL-4 ko mice had elevated IL-10 gene expression (p = 0.014). Remarkably, CCI induced TNF (p<0.01), IL-1β (p<0.05), IL-10 (p<0.05), and IL-13 (p<0.001) gene expression exclusively in the ipsilateral spinal cord of IL-4 ko mice. The compensatory overexpression of the anti-inflammatory and analgesic cytokines IL-10 and IL-13 in the spinal cord of IL-4 ko mice may explain the lack of genotype differences for pain behavior after CCI. Additionally, CCI induced gene expression of μ, κ, and δ opioid receptors in the contralateral cortex and thalamus of IL-4 ko mice, paralleled by fast onset of morphine analgesia, but not in wt mice. We conclude that a lack of IL-4 leads to mechanical sensitivity; the compensatory hyperexpression of analgesic cytokines and opioid receptors after CCI, in turn, protects IL-4 ko mice from enhanced pain behavior after nerve lesion.}, language = {en} } @article{UeceylerValetKafkeetal.2014, author = {{\"U}{\c{c}}eyler, Nurcan and Valet, Michael and Kafke, Waldemar and T{\"o}lle, Thomas R. and Sommer, Claudia}, title = {Local and Systemic Cytokine Expression in Patients with Postherpetic Neuralgia}, doi = {10.1371/journal.pone.0105269}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-113041}, year = {2014}, abstract = {Background Postherpetic neuralgia (PHN) is the painful complication of a varicella zoster virus reactivation. We investigated the systemic and local gene expression of pro- and anti-inflammatory cytokine expression in patients with PHN. Methods Thirteen patients with PHN at the torso (Th4-S1) were recruited. Skin punch biopsies were obtained from the painful and the contralateral painless body area for intraepidermal nerve fiber density (IENFD) and cytokine profiling. Additionally, blood was withdrawn for systemic cytokine expression and compared to blood values of healthy controls. We analyzed the gene expression of selected pro- and anti-inflammatory cytokines (tumor necrosis factor-alpha [TNF] and interleukins [IL]-1β, IL-2, and IL-8). Results IENFD was lower in affected skin compared to unaffected skin (p<0.05), while local gene expression of pro- and anti-inflammatory cytokines did not differ except for two patients who had 7fold higher IL-6 and 10fold higher IL-10 gene expression in the affected skin compared to the contralateral unaffected skin sample. Also, the systemic expression of cytokines in patients with PHN and in healthy controls was similar. Conclusion While the systemic and local expression of the investigated pro- and anti-inflammatory cytokines was not different from controls, this may have been influenced by study limitations like the low number of patients and different disease durations. Furthermore, other cytokines or pain mediators need to be considered.}, language = {en} }