@article{GutzeitWellerMuthetal.2024, author = {Gutzeit, Julian and Weller, Lisa and Muth, Felicitas and K{\"u}rten, Jens and Huestegge, Lynn}, title = {Eye did this! Sense of agency in eye movements}, series = {Acta Psychologica}, volume = {243}, journal = {Acta Psychologica}, doi = {10.1016/j.actpsy.2023.104121}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-349819}, year = {2024}, abstract = {This study investigates the sense of agency (SoA) for saccades with implicit and explicit agency measures. In two eye tracking experiments, participants moved their eyes towards on-screen stimuli that subsequently changed color. Participants then either reproduced the temporal interval between saccade and color-change (Experiment 1) or reported the time points of these events with an auditory Libet clock (Experiment 2) to measure temporal binding effects as implicit indices of SoA. Participants were either made to believe to exert control over the color change or not (agency manipulation). Explicit ratings indicated that the manipulation of causal beliefs and hence agency was successful. However, temporal binding was only evident for caused effects, and only when a sufficiently sensitive procedure was used (auditory Libet clock). This suggests a feebler connection between temporal binding and SoA than previously proposed. The results also provide evidence for a relatively fast acquisition of sense of agency for previously never experienced types of action-effect associations. This indicates that the underlying processes of action control may be rooted in more intricate and adaptable cognitive models than previously thought. Oculomotor SoA as addressed in the present study presumably represents an important cognitive foundation of gaze-based social interaction (social sense of agency) or gaze-based human-machine interaction scenarios. Public significance statement: In this study, sense of agency for eye movements in the non-social domain is investigated in detail, using both explicit and implicit measures. Therefore, it offers novel and specific insights into comprehending sense of agency concerning effects induced by eye movements, as well as broader insights into agency pertaining to entirely newly acquired types of action-effect associations. Oculomotor sense of agency presumably represents an important cognitive foundation of gaze-based social interaction (social agency) or gaze-based human-machine interaction scenarios. Due to peculiarities of the oculomotor domain such as the varying degree of volitional control, eye movements could provide new information regarding more general theories of sense of agency in future research.}, language = {en} } @article{CaoChenHaendel2020, author = {Cao, Liyu and Chen, Xinyu and Haendel, Barbara F.}, title = {Overground Walking Decreases Alpha Activity and Entrains Eye Movements in Humans}, series = {Frontiers in Human Neuroscience}, volume = {14}, journal = {Frontiers in Human Neuroscience}, issn = {1662-5161}, doi = {10.3389/fnhum.2020.561755}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-219872}, year = {2020}, abstract = {Experiments in animal models have shown that running increases neuronal activity in early visual areas in light as well as in darkness. This suggests that visual processing is influenced by locomotion independent of visual input. Combining mobile electroencephalography, motion- and eye-tracking, we investigated the influence of overground free walking on cortical alpha activity (~10 Hz) and eye movements in healthy humans. Alpha activity has been considered a valuable marker of inhibition of sensory processing and shown to negatively correlate with neuronal firing rates. We found that walking led to a decrease in alpha activity over occipital cortex compared to standing. This decrease was present during walking in darkness as well as during light. Importantly, eye movements could not explain the change in alpha activity. Nevertheless, we found that walking and eye related movements were linked. While the blink rate increased with increasing walking speed independent of light or darkness, saccade rate was only significantly linked to walking speed in the light. Pupil size, on the other hand, was larger during darkness than during light, but only showed a modulation by walking in darkness. Analyzing the effect of walking with respect to the stride cycle, we further found that blinks and saccades preferentially occurred during the double support phase of walking. Alpha power, as shown previously, was lower during the swing phase than during the double support phase. We however could exclude the possibility that the alpha modulation was introduced by a walking movement induced change in electrode impedance. Overall, our work indicates that the human visual system is influenced by the current locomotion state of the body. This influence affects eye movement pattern as well as neuronal activity in sensory areas and might form part of an implicit strategy to optimally extract sensory information during locomotion.}, language = {en} } @article{HuesteggeHerbortGoschetal.2019, author = {Huestegge, Lynn and Herbort, Oliver and Gosch, Nora and Kunde, Wilfried and Pieczykolan, Aleks}, title = {Free-choice saccades and their underlying determinants: explorations of high-level voluntary oculomotor control}, series = {Journal of Vision}, volume = {19}, journal = {Journal of Vision}, number = {3}, doi = {10.1167/19.3.14}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201493}, pages = {14}, year = {2019}, abstract = {Models of eye-movement control distinguish between different control levels, ranging from automatic (bottom-up, stimulus-driven selection) and automatized (based on well-learned routines) to voluntary (top-down, goal-driven selection, e.g., based on instructions). However, one type of voluntary control has yet only been examined in the manual and not in the oculomotor domain, namely free-choice selection among arbitrary targets, that is, targets that are of equal interest from both a bottom-up and top-down processing perspective. Here, we ask which features of targets (identity- or location-related) are used to determine such oculomotor free-choice behavior. In two experiments, participants executed a saccade to one of four peripheral targets in three different choice conditions: unconstrained free choice, constrained free choice based on target identity (color), and constrained free choice based on target location. The analysis of choice frequencies revealed that unconstrained free-choice selection closely resembled constrained choice based on target location. The results suggest that free-choice oculomotor control is mainly guided by spatial (location-based) target characteristics. We explain these results by assuming that participants tend to avoid less parsimonious recoding of target-identity representations into spatial codes, the latter being a necessary prerequisite to configure oculomotor commands.}, language = {en} } @article{PieczykolanHuestegge2014, author = {Pieczykolan, Aleksandra and Huestegge, Lynn}, title = {Oculomotor dominance in multitasking: Mechanisms of conflict resolution in cross-modal action}, doi = {10.1167/14.13.18}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-111024}, year = {2014}, abstract = {In daily life, eye movement control usually occurs in the context of concurrent action demands in other effector domains. However, little research has focused on understanding how such cross-modal action demands are coordinated, especially when conflicting information needs to be processed conjunctly in different action modalities. In two experiments, we address this issue by studying vocal responses in the context of spatially conflicting eye movements (Experiment 1) and in the context of spatially conflicting manual actions (Experiment 2, under controlled eye fixation conditions). Crucially, a comparison across experiments allows us to assess resource scheduling priorities among the three effector systems by comparing the same (vocal) response demands in the context of eye movements in contrast to manual responses. The results indicate that in situations involving response conflict, eye movements are prioritized over concurrent action demands in another effector system. This oculomotor dominance effect corroborates previous observations in the context of multiple action demands without spatial response conflict. Furthermore, and in line with recent theoretical accounts of parallel multiple action control, resource scheduling patterns appear to be flexibly adjustable based on the temporal proximity of the two actions that need to be performed.}, language = {en} }