@article{KoleMerzAmaretal.2021, author = {Kole, Goutam Kumar and Merz, Julia and Amar, Anissa and Fontaine, Bruno and Boucekkine, Abdou and Nitsch, J{\"o}rn and Lorenzen, Sabine and Friedrich, Alexandra and Krummenacher, Ivo and Košćak, Marta and Braunschweig, Holger and Piantanida, Ivo and Halet, Jean-Fran{\c{c}}ois and M{\"u}ller-Buschbaum, Klaus and Marder, Todd B.}, title = {2- and 2,7-substituted para-N-methylpyridinium pyrenes: syntheses, molecular and electronic structures, photophysical, electrochemical, and spectroelectrochemical properties and binding to double-stranded (ds) DNA}, series = {Chemistry - A European Journal}, volume = {27}, journal = {Chemistry - A European Journal}, number = {8}, doi = {10.1002/chem.202004748}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256642}, pages = {2837-2853}, year = {2021}, abstract = {Two N-methylpyridinium compounds and analogous N-protonated salts of 2- and 2,7-substituted 4-pyridyl-pyrene compounds were synthesised and their crystal structures, photophysical properties both in solution and in the solid state, electrochemical and spectroelectrochemical properties were studied. Upon methylation or protonation, the emission maxima are significantly bathochromically shifted compared to the neutral compounds, although the absorption maxima remain almost unchanged. As a result, the cationic compounds show very large apparent Stokes shifts of up to 7200 cm\(^{-1}\). The N-methylpyridinium compounds have a single reduction at ca. -1.5 V vs. Fc/Fc\(^+\) in MeCN. While the reduction process was reversible for the 2,7-disubstituted compound, it was irreversible for the mono-substituted one. Experimental findings are complemented by DFT and TD-DFT calculations. Furthermore, the N-methylpyridinium compounds show strong interactions with calf thymus (ct)-DNA, presumably by intercalation, which paves the way for further applications of these multi-functional compounds as potential DNA-bioactive agents.}, language = {en} } @article{BruecknerFantuzziStennettetal.2021, author = {Br{\"u}ckner, Tobias and Fantuzzi, Felipe and Stennett, Tom E. and Krummenacher, Ivo and Dewhurst, Rian D. and Engels, Bernd and Braunschweig, Holger}, title = {Isolation of neutral, mono-, and dicationic B\(_2\)P\(_2\) rings by diphosphorus addition to a boron-boron triple bond}, series = {Angewandte Chemie International Edition}, volume = {60}, journal = {Angewandte Chemie International Edition}, number = {24}, doi = {10.1002/anie.202102218}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256451}, pages = {13661-13665}, year = {2021}, abstract = {The NHC-stabilised diboryne (B\(_2\)(SIDep)\(_2\); SIDep=1,3-bis(2,6-diethylphenyl)imidazolin-2-ylidene) undergoes a high-yielding P-P bond activation with tetraethyldiphosphine at room temperature to form a B\(_2\)P\(_2\) heterocycle via a diphosphoryldiborene by 1,2-diphosphination. The heterocycle can be oxidised to a radical cation and a dication, respectively, depending on the oxidant used and its counterion. Starting from the planar, neutral 1,3-bis(alkylidene)-1,3-diborata-2,4-diphosphoniocyclobutane, each oxidation step leads to decreased B-B distances and loss of planarity by cationisation. X-ray analyses in conjunction with DFT and CASSCF/NEVPT2 calculations reveal closed-shell singlet, butterfly-shaped structures for the NHC-stabilised dicationic B\(_2\)P\(_2\) rings, with their diradicaloid, planar-ring isomers lying close in energy.}, language = {en} } @article{CzernetzkiArrowsmithFantuzzietal.2021, author = {Czernetzki, Corinna and Arrowsmith, Merle and Fantuzzi, Felipe and G{\"a}rtner, Annalena and Tr{\"o}ster, Tobias and Krummenacher, Ivo and Schorr, Fabian and Braunschweig, Holger}, title = {A neutral beryllium(I) radical}, series = {Angewandte Chemie International Edition}, volume = {60}, journal = {Angewandte Chemie International Edition}, number = {38}, doi = {10.1002/anie.202108405}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256529}, pages = {20776-20780}, year = {2021}, abstract = {The reduction of a cyclic alkyl(amino)carbene (CAAC)-stabilized organoberyllium chloride yields the first neutral beryllium radical, which was characterized by EPR, IR, UV/Vis spectroscopy and X-ray crystallography. DFT calculations show significant spin density at beryllium and confirm donor-acceptor bonding between an alkylberyllium radical fragment and a neutral CAAC ligand.}, language = {en} } @article{HeRauchFriedrichetal.2021, author = {He, Jiang and Rauch, Florian and Friedrich, Alexandra and Krebs, Johannes and Krummenacher, Ivo and Bertermann, R{\"u}diger and Nitsch, J{\"o}rn and Braunschweig, Holger and Finze, Maik and Marder, Todd B.}, title = {Phenylpyridyl-fused boroles: a unique coordination mode and weak B-N coordination-induced dual fluorescence}, series = {Angewandte Chemie International Edition}, volume = {60}, journal = {Angewandte Chemie International Edition}, number = {9}, doi = {10.1002/anie.202013692}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256423}, pages = {4833-4840}, year = {2021}, abstract = {Phenylpyridyl-fused boroles [TipPBB1]\(_4\) and TipPBB2 were synthesized and their properties investigated. [TipPBB1]\(_4\) forms a tetramer in both the solid state and solution. TipPBB2 contains a 4-coordinate boron atom in the solid state but dissociates to give a 3-coordinate boron species in solution. TipPBB2 shows interesting temperature-dependent dual fluorescence in solution because of the equilibrium between 3- and 4-coordinate boron species due to weak N⋅⋅⋅B intermolecular coordination.}, language = {en} }