@article{WeilandBeezWestermaieretal.2021, author = {Weiland, Judith and Beez, Alexandra and Westermaier, Thomas and Kunze, Ekkehard and Sir{\´e}n, Anna-Leena and Lilla, Nadine}, title = {Neuroprotective strategies in aneurysmal subarachnoid hemorrhage (aSAH)}, series = {International Journal of Molecular Sciences}, volume = {22}, journal = {International Journal of Molecular Sciences}, number = {11}, issn = {1422-0067}, doi = {10.3390/ijms22115442}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260755}, year = {2021}, abstract = {Aneurysmal subarachnoid hemorrhage (aSAH) remains a disease with high mortality and morbidity. Since treating vasospasm has not inevitably led to an improvement in outcome, the actual emphasis is on finding neuroprotective therapies in the early phase following aSAH to prevent secondary brain injury in the later phase of disease. Within the early phase, neuroinflammation, thromboinflammation, disturbances in brain metabolism and early neuroprotective therapies directed against delayed cerebral ischemia (DCI) came into focus. Herein, the role of neuroinflammation, thromboinflammation and metabolism in aSAH is depicted. Potential neuroprotective strategies regarding neuroinflammation target microglia activation, metalloproteases, autophagy and the pathway via Toll-like receptor 4 (TLR4), high mobility group box 1 (HMGB1), NF-κB and finally the release of cytokines like TNFα or IL-1. Following the link to thromboinflammation, potential neuroprotective therapies try to target microthrombus formation, platelets and platelet receptors as well as clot clearance and immune cell infiltration. Potential neuroprotective strategies regarding metabolism try to re-balance the mismatch of energy need and supply following aSAH, for example, in restoring fuel to the TCA cycle or bypassing distinct energy pathways. Overall, this review addresses current neuroprotective strategies in aSAH, hopefully leading to future translational therapy options to prevent secondary brain injury.}, language = {en} } @article{VadokasKoehlerWeilandetal.2019, author = {Vadokas, Georg and Koehler, Stefan and Weiland, Judith and Lilla, Nadine and Stetter, Christian and Westermaier, Thomas}, title = {Early antiinflammatory therapy attenuates brain damage after SAH in rats}, series = {Translational Neuroscience}, volume = {10}, journal = {Translational Neuroscience}, number = {1}, doi = {10.1515/tnsci-2019-0018}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201440}, pages = {104-111}, year = {2019}, abstract = {Background Early inflammatory processes may play an important role in the development of early brain injury (EBI) after subarachnoid hemorrhage (SAH). Experimental studies suggest that anti-inflammatory and membrane-stabilizing drugs might have beneficial effects, although the underlying mechanisms are not fully understood. The aim of this study was to investigate the effect of early treatment with methylprednisolone and minocycline on cerebral perfusion and EBI after experimental SAH. Methods Male Sprague-Dawley rats were subjected to SAH using the endovascular filament model. 30 minutes after SAH, they were randomly assigned to receive an intravenous injection of methylprednisolone (16mg/kg body weight, n=10), minocycline (45mg/kg body weight, n=10) or saline (n=11). Mean arterial blood pressure (MABP), intracranial pressure (ICP) and local cerebral blood flow (LCBF) over both hemispheres were recorded continuously for three hours following SAH. Neurological assessment was performed after 24 hours. Hippocampal damage was analyzed by immunohistochemical staining (caspase 3). Results Treatment with methylprednisolone or minocycline did not result in a significant improvement of MABP, ICP or LCBF. Animals of both treatment groups showed a non-significant trend to better neurological recovery compared to animals of the control group. Mortality was reduced and hippocampal damage significantly attenuated in both methylprednisolone and minocycline treated animals. Conclusion The results of this study suggest that inflammatory processes may play an important role in the pathophysiology of EBI after SAH. Early treatment with the anti-inflammatory drugs methylprednisolone or minocycline in the acute phase of SAH has the potential to reduce brain damage and exert a neuroprotective effect.}, language = {en} } @article{KunzeLillaStetteretal.2018, author = {Kunze, Ekkehard and Lilla, Nadine and Stetter, Christian and Ernestus, Ralf-Ingo and Westermaier, Thomas}, title = {Magnesium protects in episodes of critical perfusion after aneurysmal SAH}, series = {Translational Neuroscience}, volume = {9}, journal = {Translational Neuroscience}, number = {1}, doi = {10.1515/tnsci-2018-0016}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-177078}, pages = {99-105}, year = {2018}, abstract = {Background: To analyze whether magnesium has a neuroprotective effect during episodes that indicate a critical brain perfusion after aneurysmal subarachnoid hemorrhage (SAH). Methods: 107 patients with aSAH were randomized to continuously receive intravenous magnesium sulfate with target serum levels of 2.0 - 2.5 mmol/l (n = 54) or isotonic saline (n = 53). Neurological examination and transcranial Doppler sonography (TCD) were performed daily, Perfusion-CT (PCT) was acquired in 3-day intervals, angiography in case of suspected vasospasm. The primary endpoint was the development of secondary infarction following episodes of delayed ischemic neurological deficit (DIND), elevated mean flow velocity (MFV) in TCD or pathological findings in PCT. Results: In the magnesium group, 9 episodes of DIND were registered, none was followed by secondary infarction. In the control group, 23 episodes of DIND were registered, 9 were followed by secondary infarction (p < 0.05). In the magnesium group, 114 TCD-measurements showed an elevated MFV(> 140 cm/s). 7 were followed by new infarction. In control patients, 135 measurements showed elevated MFV, 32 were followed by new infarction (p < 0.05). 10 of 117 abnormal PCT-findings were followed by new infarction, compared to 30 of 122 in the control-group (p < 0.05). Conclusion: DIND, elevated MFV in TCD and abnormal PCT are findings which are associated with an increased risk to develop delayed secondary infarction. The results of this analysis suggest that magnesium-treatment may reduce the risk to develop infarction in a state of critical brain perfusion.}, language = {en} }