@phdthesis{Griesbeck2020, author = {Griesbeck, Stefanie Ingrid}, title = {A Very Positive Image of Boron: Triarylborane Chromophores for Live Cell Imaging}, doi = {10.25972/OPUS-17992}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-179921}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Efficient quadrupolar chromophores (A-pi-A) with triarylborane moieties as acceptors have been studied by the Marder group regarding their non-linear optical properties and two-photon absorption ability for many years. Within the present work, this class of dyes found applications in live-cell imaging. Therefore, the dyes need to be water-soluble and water-stable in diluted aqueous solutions, which was examined in Chapter 2. Furthermore, the influence of the pi-bridge on absorption and emission maxima, fluorescence quantum yields and especially the two-photon absorption properties of the chromophores was investigated in Chapter 3. In Chapter 4, a different strategy for the design of efficient two-photon excited fluorescence imaging dyes was explored using dipoles (D-A) and octupoles (DA3). Finding the optimum balance between water-stability and pi-conjugation and, therefore, red-shifted absorption and emission and high fluorescence quantum yields, was investigated in Chapter 5}, subject = {Borane}, language = {en} } @phdthesis{Dannenbauer2015, author = {Dannenbauer, Nicole}, title = {Koordinationspolymere und -verbindungen mit intrinsischer Lumineszenz auf Basis von Selten-Erd-Chloriden, Thiazol, Thiolaten und Amin-Co-Liganden}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-136218}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {In dieser Arbeit konnten 69 neue und neuartige Koordinationspolymere sowie Komplexe mit schwefelhaltigen Liganden auf Selten-Erd-Chlorid-Basis synthetisiert und strukturell charak-terisiert werden. Durch die Umsetzung der Chloride mit dem Liganden Thiazol konnten bei Raumtemperatur, abh{\"a}ngig vom Ionenradius und der eingesetzten Menge Thiazol, sowohl Koordinationspolymere wie 1∞[LnCl3(thz)6]·thz (Ln = La, Ce), dimere Komplexe [Ln2Cl6(thz)8]·3(thz) (Ln = La, Ce, Pr, Nd), [Pr2Cl6(thz)8] sowie monomere Komplexe [LnCl3(thz)4]2·thz (Ln = Sm , Eu , Tb, Ho) erhalten werden. Mittels temperaturabh{\"a}ngiger Pulverdiffraktometrie und in-situ Infra-rotspektroskopie sowie DTA/TG-Messungen konnte exemplarisch an 1∞[LaCl3(thz)6]·thz und [Pr2Cl6(thz)8] gezeigt werden, dass stufenweise thermisch bedingt Thiazolmolek{\"u}le aus den Strukturen abgegeben werden bis hin zur R{\"u}ckbildung des eingesetzten LnCl3. Unter der Vo-raussetzung, dass die fl{\"u}chtige Komponente Thiazol resorbiert wird, ist daher ein Kreispro-zess denkbar. Ferner konnten zus{\"a}tzlich wasserhaltige Phasen wie der vierkernige Cluster [Pr4Cl10(OH)2(thz)8(H2O)2] erhalten werden. Durch die Zugabe eines geeigneten Linkermolek{\"u}ls in das Reaktionssystem aus trivalenten Lanthanidchloriden und Thiazol konnten unter solvothermalen Bedingungen eine Vielzahl an Koordinationspolymeren und Komplexen erhalten werden. Als Linker oder als end-on Ligan-den eigneten sich sowohl eine Reihe an ditopischer Pyridylliganden 4,4'-Biypridin (bipy), 1,2-Di-(4-pyridyl)ethen (dpe), trans-1-(2-Pyridyl)-2-(4-pyridyl)ethylen (tppe), 1,2-Di-(4-pyridyl)ethan (dpa), sowie die Diazine Pyrazin (pyz) und Pyrimidin (pym) oder auch Azole wie 1,2,4-Triazol (tzH) und Pyrazol (pzH). Mittels Einkristallstrukturanalyse und pulverdiffrakto-metrischer Methoden konnten die dreidimensionalen Ger{\"u}stverbindungen 3∞[LnCl3(dpa)2]·thz (Ln = Ce - Sm, Gd - Lu), die Schichtstrukturen 2∞[Ln2Cl6(bipy)3(thz)2]·thz (Ln = La, Ce), 2∞[LnCl3(tzH)2(thz)]·thz (Ln = Pr, Sm - Gd) und die strangartigen Koordinationspolymere 1∞[LnCl3(bipy)(thz)2]·thz (Ln = Pr, Nd), 1∞[LnCl3(bipy)(thz)2]·thz (Ln = Sm, Eu - Er, Yb), 1∞[Ln2Cl6(dpe)2(thz)4]·dpe (Ln = Ce, Nd), 1∞[LnCl3(dpe)(thz)2]· 0.5 (dpe) 0.5 (thz) (Ln = Sm, Gd - Dy, Er, Yb), 1∞[HoCl3(dpe)(thz)2]·thz, 1∞[La2Cl6(dpa)(thz)6], 1∞[Pr2Cl6(pyz) (thz)6], 1∞[Ln2Cl6(tzH)4(thz)2] (Ln = Pr, Sm, Gd) sowie die Komplexe [LnCl3(tppe)2(thz)2] (Ln = Nd, Tb, Ho, Er), [Ln2Cl6(pyz)(thz)6]·2(thz) (Ln = Tb, Er), [Ln2Cl6(pym)2(thz)4] (Ln = Tb , Er), [LnCl3(pzH)3(thz)2] (Ln = Pr, Gd) charakterisiert werden.   Ferner konnten die erhaltenen Verbindungen weitestgehend auf ihre photolumineszenz-spektroskopischen sowie thermischen Eigenschaften hin untersucht werden. Außerdem konn-ten auch durch direkte Schwefelkoordination an die Ln3+-Zentren eindimensionale Koordina-tionspolymere 1∞[PrCl2(amt)(py)3] (amt- = 3-Amino-5-mercapto-1,2,4-triazolat), [HNEt3]1∞[LnCl2(amt)2] (Ln = Ho, Er) und Komplexe [LnCl2(Mbim)(py)3]·py (Ln = Y, Er; Mbim = 2-Mercaptobenzimdiazolat) generiert werden}, subject = {Lanthanoide}, language = {de} } @phdthesis{Bissinger2013, author = {Bissinger, Philipp}, title = {Synthese, Struktur und Reaktivit{\"a}t Basen-stabilisierter Borane und Diborene}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-79144}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Umsetzungen N-heterocyclischer Carbene mit Boranen f{\"u}hren zur Bildung von „Lewis-S{\"a}ure-Base-Addukten". In Abh{\"a}ngigkeit des Substitutionsmusters der eingesetzten Borane bzw. Carbene eignen sich die erhaltenen Addukte als Ausgangsverbindungen zur Realisierung verschiedener Strukturmotive. Mit geeigneten {\"U}bergangsmetallfragmenten gelingt die Darstellung von sigma-Boran-Komplexen bzw. Basen-stabilisierter Boryl-Komplexe, welche mittels spektroskopischer Methoden sowohl im Festk{\"o}rper, als auch in L{\"o}sung untersucht wurden. Ebenfalls gelingt die Synthese Basen-stabilisierter Borirane und einer tetraedrischen Borid-Spezies. Zudem wird ein selektiver Zugang zu Basen-stabilisierten Diborenen entwickelt, wobei deren Bindungssituation und Reaktivit{\"a}t im Detail diskutiert wird. So kann das B=B-Fragment in polymere Spezies eingebunden werden oder als Ligand an {\"U}bergangsmetalle koordinieren.}, subject = {Borane}, language = {de} }