@article{KošćakPeharBožinovićetal.2022, author = {Košćak, Marta and Pehar, Isabela and Božinović, Ksenija and Kole, Goutam Kumar and Sobočanec, Sandra and Podgorski, Iva I. and Pinterić, Marija and M{\"u}ller-Buschbaum, Klaus and Majhen, Dragomira and Piantanida, Ivo and Marder, Todd B.}, title = {Para-N-methylpyridinium pyrenes: impact of positive charge on ds-DNA/RNA and protein recognition, photo-induced bioactivity, and intracellular localisation}, series = {Pharmaceutics}, volume = {14}, journal = {Pharmaceutics}, number = {11}, issn = {1999-4923}, doi = {10.3390/pharmaceutics14112499}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-297247}, year = {2022}, abstract = {The 2- and 2,7- substituted para-N-methylpyridinium pyrene cations show high-affinity intercalation into ds-DNAs, whereas their non-methylated analogues interacted with ds-DNA/RNA only in the protonated form (at pH 5), but not at physiological conditions (pH 7). The fluorescence from non-methylated analogues was strongly dependent on the protonation of the pyridines; consequently, they act as fluorescence ratiometric probes for simultaneous detection of both ds-DNA and BSA at pH 5, relying on the ratio between intensities at 420 nm (BSA specific) and 520 nm (DNA specific), whereby exclusively ds-DNA sensing could be switched-off by adjustment to pH 7. Only methylated, permanently charged pyrenes show photoinduced cleavage of circular DNA, attributed to pyrene-mediated irradiation-induced production of singlet oxygen. Consequently, the moderate toxicity of these cations against human cell lines is strongly increased upon irradiation. Detailed studies revealed increased total ROS production in cells treated by the compounds studied, accompanied by cell swelling and augmentation of cellular complexity. The most photo-active 2-para-N-methylpyridinium pyrene showed significant localization at mitochondria, its photo-bioactivity likely due to mitochondrial DNA damage. Other derivatives were mostly non-selectively distributed between various cytoplasmic organelles, thus being less photoactive.}, language = {en} } @article{FergerRogerKoesteretal.2022, author = {Ferger, Matthias and Roger, Chantal and K{\"o}ster, Eva and Rauch, Florian and Lorenzen, Sabine and Krummenacher, Ivo and Friedrich, Alexandra and Košćak, Marta and Nestić, Davor and Braunschweig, Holger and Lambert, Christoph and Piantanida, Ivo and Marder, Todd B.}, title = {Electron-Rich EDOT Linkers in Tetracationic bis-Triarylborane Chromophores: Influence on Water Stability, Biomacromolecule Sensing, and Photoinduced Cytotoxicity}, series = {Chemistry - A European Journal}, volume = {28}, journal = {Chemistry - A European Journal}, number = {48}, doi = {10.1002/chem.202201130}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-287241}, year = {2022}, abstract = {Three novel tetracationic bis-triarylboranes with 3,4-ethylenedioxythiophene (EDOT) linkers, and their neutral precursors, showed significant red-shifted absorption and emission compared to their thiophene-containing analogues, with one of the EDOT-derivatives emitting in the NIR region. Only the EDOT-linked trixylylborane tetracation was stable in aqueous solution, indicating that direct attachment of a thiophene or even 3-methylthiophene to the boron atom is insufficient to provide hydrolytic stability in aqueous solution. Further comparative analysis of the EDOT-linked trixylylborane tetracation and its bis-thiophene analogue revealed efficient photo-induced singlet oxygen production, with the consequent biological implications. Thus, both analogues bind strongly to ds-DNA and BSA, very efficiently enter living human cells, accumulate in several different cytoplasmic organelles with no toxic effect but, under intense visible light irradiation, they exhibit almost instantaneous and very strong cytotoxic effects, presumably attributed to singlet oxygen production. Thus, both compounds are intriguing theranostic agents, whose intracellular and probably intra-tissue location can be monitored by strong fluorescence, allowing switching on of the strong bioactivity by well-focused visible light.}, language = {en} }