@phdthesis{Bach2004, author = {Bach, Lars}, title = {Neuartige nanostrukturierte Halbleiterlaser und Mikroringresonatoren auf InP-Basis f{\"u}r Wellenl{\"a}ngenmultiplexsysteme in der optischen Nachrichten{\"u}bertragung}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-9474}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {Zusammenfassung Diese Arbeit besch{\"a}ftigt sich mit der Herstellung und Untersuchung von neuartigen nanostrukturierten Halbleiterbauelementen. Es wird gezeigt, dass durch den Einsatz von optischer und hochaufl{\"o}sender Elektronenstrahl- und Ionenstrahllithographie verschiedene optoelektronische Bauelemente (Laser und Filter) definiert werden k{\"o}nnen. Die Kombination dieser Definitionsprozesse mit speziellen nass- und trockenchemischen {\"A}tzverfahren erlaubt die Herstellung von Bauelementen mit sehr hoher Genauigkeit, Reproduzierbarkeit und monolithischer Integrationsf{\"a}higkeit mit verschiedensten Geometrien und Bereichen innerhalb der Bauelemente. Die Grundlagen zum Verst{\"a}ndnis der Funktionsweise und der Hochfrequenzeigenschaften der einzelnen Resonatorarten, Gitterstrukturen und der Laser mit diesen Gitterstrukturen sind in Kapitel 2 zusammen gefasst. Nach einer kurzen Abhandlung des Laserprinzips und des Aufbaus einer Laserdiode, werden die statischen und dynamischen Kenngr{\"o}ßen und Prozesse in den Lasern ausf{\"u}hrlich vorgestellt. Besonderes Augenmerk gilt dabei den dynamischen Grundlagen und der Erl{\"a}uterung eines zus{\"a}tzlichen Wechselwirkungsprinzips, genannt „Detuned Loading", im Laser und die sich daraus ergebenden neuen Eigenschaften. Die Auswirkungen der Resonatorgeometrien und Gitterstrukturen auf die spektralen Eigenschaften der Laser sind Bestandteil des zweiten Teiles von Kapitel 2. In Kapitel 3 werden die technologischen Prozesse zur Herstellung der verschiedensten pr{\"a}sentierten Bauelemente im Detail vorgestellt. Die Vorstellung der Charakterisierungsmethoden und der verwendeten Messpl{\"a}tze schließen dieses Kapitel ab. Kapitel 4 besch{\"a}ftigt sich ausschließlich mit den elektrischen und spektralen Eigenschaften der einzel- und gekoppelten Quadrat-Resonator-Lasern. Kapitel 5 besch{\"a}ftigt sich mit monomodige DFB- oder DBR-Lasern f{\"u}r Wellenl{\"a}ngenmultiplexsysteme im Wellenl{\"a}ngenbereich um 1.55 µm, als Einzelkomponenten oder in Arrays, die eine exakt einstellbarere Wellenl{\"a}nge und hoher Modenstabilit{\"a}t aufweisen. Durch die Verwendung des DBR-Prinzips kann eine signifikante Verbesserung der statischen und dynamischen Eigenschaften gegen{\"u}ber dem DFB-Prinzip erreicht werden. Die Verbesserungen der statischen Eigenschaften beruhen haupts{\"a}chlich auf der r{\"a}umlichen Trennung von Verst{\"a}rkungs- und Gitterbereich im Fall des DBR-Lasers und der damit verbundenen Erh{\"o}hung der Reflexion des R{\"u}ckfacettenbereiches. Die Trennung bewirkt eine Reduktion der Absorption im Verst{\"a}rkungsbereich, keine gitterimplantationsbedingten Erh{\"o}hung der internen Absorption wie im DFB-Fall, und damit eine Erh{\"o}hung der Effizienz was sich wiederum in einer geringern W{\"a}rmeproduktion {\"a}ußert. Aufgrund der aufgef{\"u}hrten Ursachen ist es m{\"o}glich durch Gr{\"o}ßenoptimierung der jeweiligen Bereiche Schwellenstr{\"o}me von 8 mA, Effizienzen von 0.375 W/A, Ausgangsleistungen bis zu 70 mW, Betriebsbereiche bis zum 12fachen des Schwellenstromes, Verschiebungen der Wellenl{\"a}nge mit dem Betriebsstrom von 0.01 nm/mA, eine thermische Belastbarkeiten bis zu 120°C und Seitenmodenunterdr{\"u}ckungen bis zu 67 dB durch das DBR-Laserprinzip zu realisieren. In Kapitel 6 wird ein neues Konzept eines hochfrequenzoptimierten Lasers vorgestellt. Das Prinzip des „Detuned Loading" ist sehr sensitiv auf die Phasenlage der umlaufenden Welle im Laser und auf die Lage der Hauptmode auf der Reflexionsfunktion des Gitters. Da eine Phasen{\"a}nderung von 2\&\#61552;\&\#61472;einer L{\"a}ngen{\"a}nderung von einigen 100 nm entspricht und dies außerhalb der Herstellungstoleranz liegt, ist eine gezielte Kontrolle dieses Prinzips im DBR-Laser nicht m{\"o}glich. Dies f{\"u}hrte zu einer Weiterentwicklung des DBR-Lasers in einem Laser der einer Phasenkontrolle erm{\"o}glicht, genannt CCIG-Laser. Dieser Laser besteht aus einer Lasersektion, einer zentralen Gittersektion und einer angeschlossenen Phasensektion. Durch Strominjektion in die Phasensektion ist es m{\"o}glich {\"u}ber eine {\"A}nderung des Brechungsindexes eine gezielte Einstellung der Phasenlage zu gew{\"a}hrleisten. Die Phasensektion hat keine Auswirkungen auf die statischen elektrischen und spektralen Eigenschaften der Laser. Diese sind sehr gut mit denen der DBR-Laser vergleichbar. Damit war es m{\"o}glich durch einen CCIG-Laser mit Sektionsgr{\"o}ßen von 500 µm f{\"u}r jede Sektion eine Steigerung der Bandbreite auf einen Rekordwert von 37 GHz, dass entspricht einem Steigerungsfaktor von 4.5 gegen{\"u}ber Fabry-Perot-Lasern gleicher L{\"a}nge, zu steigern.}, subject = {Halbleiterlaser}, language = {de} }