@phdthesis{Schuster2021, author = {Schuster, Sarah}, title = {Analysis of \(Trypanosoma\) \(brucei\) motility and the infection process in the tsetse fly vector}, doi = {10.25972/OPUS-19269}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-192691}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {African trypanosomes are protist pathogens that are infective for a wide spectrum of mammalian hosts. Motility has been shown to be essential for their survival and represents an important virulence factor. Trypanosoma brucei is transmitted by the bite of the bloodsucking tsetse fly, the only vector for these parasites. The voyage through the fly is complex and requires several migration, proliferation and differentiation steps, which take place in a defined order and in specific fly tissues. The first part of this doctoral thesis deals with the establishment of the trypanosome tsetse system as a new model for microswimmer analysis. There is an increasing interdisciplinary interest in microbial motility, but a lack of accessible model systems. Therefore, this work introduces the first enclosed in vivo host parasite system that is suitable for analysis of diverse microswimmer types in specific microenvironments. Several methods were used and adapted to gain unprecedented insights into trypanosome motion, the fly´s interior architecture and the physical interaction between host and parasite. This work provides a detailed overview on trypanosome motile behavior as a function of development in diverse host surroundings. In additional, the potential use of artificial environments is shown. This can be used to partly abstract the complex fly architecture and analyze trypanosome motion in defined nature inspired geometries. In the second part of the thesis, the infection of the tsetse fly is under investigation. Two different trypanosome forms exist in the blood: proliferative slender cells and cell cycle arrested stumpy cells. Previous literature states that stumpy cells are pre adapted to survive inside the fly, whereas slender cells die shortly after ingestion. However, infection experiments in our laboratory showed that slender cells were also potentially infective. During this work, infections were set up so as to minimize the possibility of stumpy cells being ingested, corroborating the observation that slender cells are able to infect flies. Using live cell microscopy and fluorescent reporter cell lines, a comparative analysis of the early development following infection with either slender or stumpy cells was performed. The experiments showed, for the first time, the survival of slender trypanosomes and their direct differentiation to the procyclic midgut stage, contradicting the current view in the field of research. Therefore, we can shift perspectives in trypanosome biology by proposing a revised life cycle model of T. brucei, where both bloodstream stages are infective for the vector.}, subject = {Motilit{\"a}t}, language = {en} } @phdthesis{Jung2018, author = {Jung, Jamin}, title = {Precise timing of the trypanosome cell division cycle}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-114932}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {African trypanosomes are the causative agents of fatal diseases in humans and livestock. Trypanosomes show a complex lifecycle and shuttle between the transmitting vector, the tsetse (Glossina spec.), and the mammalian host. As a result of this the parasite undergoes tremendous changes in morphology and metabolism to adapt to the different living environments. The two best-studied lifecycle stages are the procyclic forms (PCF) that live in the tsetse fly and the proliferative bloodstream form (BSF) that resides in the mammalian blood. The most conspicuous weapon that trypanosomes use to evade the host immune attack is a dense layer of a single protein type, the variant surface glycoprotein (VSG), which shields the entire cell surface. Immune evasion required high rates of surface membrane turnover and surface coat recycling. Trypanosomes show highly polarised cell architecture with all major eukaryotic organelles (endoplasmic reticulum, Golgi apparatus, endosomal apparatus, lysosome, mitochondrion and peroxisome-like glycosomes) generally present in single copy. Furthermore, trypanosomes possess a single flagellum, which is important not only for cellular motility but also for cell division. How the duplication of all these cellular components is coordinated in order to progresss through the cell division cycle is poorly understood. We used trypanosomes as a model organism due to the relative simplicity and the polarised nature of their cell architecture and determined the duplication of all their compartments. This was only possible due to a new synchronisation approach developed during this project. In the first part of the thesis a precise temporal map of the cell division cycle of the BSF T. brucei cell division cycle was generated. By the use of well-described morphological markers (K/N status, new flagellum outgrowth and DNA synthesis) the position of individual cells was determined with high temporal resolution; this allowed us for the first time to synchronise a cell population in silico without affecting the naturally asynchronous growth. In the second part of the thesis we used this tool to follow duplication events of the Major organelles during progression through the cell division cycle. We precisely determined the time points of organelle duplication and found that it is ordered in trypanosomes. Furthermore we found that BSF T. brucei cells do not grow continuously, cell size start to increase rapidly, during a short period of time, late in the cell division cycle. We speculate that the initiation of cell volume increase is temporally separated from the formation of all secretory organelles in order to ensure maintenance of the protective coat, which must remain intact at all times in order for BSF trypanosomes to be able to evade the host immune response.}, subject = {Zellteilung}, language = {en} } @phdthesis{Bargul2018, author = {Bargul, Joel Ltilitan}, title = {Characterization of motility and erythrocyte adherence as virulence factors in African trypanosomes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-115053}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Pathogens causing African animal trypanosomiasis (AAT), the major livestock disease in sub-Saharan Africa, belong to the salivarian group of the African trypanosomes, which are transmitted by the bite of the tsetse fly (Glossina spec.). T. vivax, T. congolense and T. brucei brucei are major pathogens of cattle in particular, causing nagana, with dramatic socio-economic consequences for the affected regions. The parasites additionally have a huge reservoir of other livestock and wild animal hosts. T. brucei, the species which also includes the subspecies pathogenic to humans causing sleeping sickness, has been extensively studied as the cultivatable model trypanosome. But less is known about the other salivarian species, which are not routinely held in culture, if at all possible. A hallmark of trypanosomal lifestyle is the protozoan flagellates incessant motility, which enables them to populate an enormous range of habitats in very diverse hosts. We were now able to characterize, for the first time with high spatiotemporal resolution microscopy, the swimming behaviour and mechanism of the most relevant salivarian species isolated directly from blood. We show the influence of viscosity on the motility of bloodstream form (BSF) cells and simulate their movement between erythrocytes, giving a clear picture of how all analyzed species move under varying environmental conditions. We show that although the basic mechanism of flagellar motility applies to all analyzed species, there are clear morphological differences that produce different reactions to the physical environment. We could define specific conditions for highly increased swimming persistence and speed for compared to the behaviour in standard culture. These results have important implications for the parasites survival strategies in the host, e.g. regarding the capacity for antibody clearance. Although we show all species to effectively remove antibodies from the cell surface, T. congolense differed markedly in its motility behaviour, which gives rise to interesting questions about this species behaviour in the bloodstream. Most of the T. congolense parasites (and to a lesser extent T. vivax) adhere to sheep erythrocytes. Further in vitro studies showed that T. congolense and T. vivax adhered to rabbit, goat, pig and cattle erythrocytes- but binding behaviour was absent in murine blood. Notably, both T. brucei and T. evansi lacked adherence to all studied host erythrocytes. Generally, attachment to blood cells caused reduction of swimming velocities. Judging from its cell architecture, as well as the motility studies in higher media viscosity and in micropillar arrays, T. congolense is not adapted to swim at high speeds in the mammalian bloodstream. Low swimming speeds could allow these purely intravascular parasites to remain bound to the host erythrocytes.}, subject = {Motili{\"a}t}, language = {en} } @phdthesis{Subota2011, author = {Subota, Ines}, title = {Switches in trypanosome differentiation: ALBA proteins acting on post-transcriptional mRNA control}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-85707}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Trypanosoma brucei is a digenetic eukaryotic parasite that develops in different tissues of a mammalian host and a tsetse fly. It is responsible for sleeping sickness in sub-saharan Africa. The parasite cycle involves more than nine developmental stages that can be clearly distinguished by their general morphology, their metabolism and the relative positioning of their DNA-containing organelles. During their development, trypanosomes remain exclusively extracellular and encounter changing environments with different physico-chemical properties (nutritional availability, viscosity, temperature, etc.). It has been proposed that trypanosomes use their flagellum as a sensing organelle, in agreement with the established role of structurally-related cilia in metazoa and ciliates. Recognition of environmental triggers is presumed to be at the initiation of differentiation events, leading to the parasite stage that is the best suited to the new environment. These changes are achieved by the modification of gene expression programmes, mostly underlying post-transcriptional control of mRNA transcripts. We first demonstrate that the RNA-binding proteins ALBA3/4 are involved in specific differentiation processes during the parasite development in the fly. They are cytosolic and expressed throughout the parasite cycle with the exception of the stages found in the tsetse fly proventriculus, as shown by both immunofluorescence and live cell analysis upon endogenous tagging with YFP. Knock-down of both proteins in the developmental stage preceding these forms leads to striking modifications: cell elongation, cell cycle arrest and relocalization of the nucleus in a posterior position, all typical of processes acting in parasites found in the proventriculus region. When ALBA3 is over-expressed from an exogenous copy during infection, it interferes with the relocalization of the nucleus in proventricular parasites. This is not observed for ALBA4 over-expression that does not visibly impede differentiation. Both ALBA3/4 proteins react to starvation conditions by accumulating in cytoplasmic stress granules together with DHH1, a recognized RNA-binding protein. ALBA3/4 proteins also partially colocalize with granules formed by polyA+ RNA in these conditions. We propose that ALBA are involved in trypanosome differentiation processes where they control a subset of developmentally regulated transcripts. These processes involving ALBA3/4 are likely to result from the specific activation of sensing pathways. In the second part of the thesis, we identify novel flagellar proteins that could act in sensing mechanisms. Several protein candidates were selected from a proteomic analysis of intact flagella performed in the host laboratory. This work validates their flagellar localization with high success (85\% of the proteins examined) and defines multiple different patterns of protein distribution in the flagellum. Two proteins are analyzed during development, one of them showing down-regulation in proventricular stages. The functional analysis of one novel flagellar membrane protein reveals its rapid dynamics within the flagellum but does not yield a visible phenotype in culture. This is coherent with sensory function that might not be needed in stable culture conditions, but could be required in natural conditions during development. In conclusion, this work adds new pieces to the puzzle of identifying molecular switches involved in developmental mRNA control and environmental sensing in trypanosome stages in the tsetse fly.}, subject = {Trypanosoma brucei}, language = {en} }