@phdthesis{Mueller2010, author = {M{\"u}ller, Judith}, title = {Die Rolle der HectH9/Mcl1-Interaktion in der Myc-induzierten Apoptose und Auswirkungen der Myc V394D-Mutation auf die von c-Myc gesteuerten Tumorgenese in einem transgenen Mausmodell}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-55789}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {W{\"a}hrend der Entstehung von Tumoren k{\"o}nnen zwei Mechanismen auftreten, die beide von der Aktivit{\"a}t der Onkogene abh{\"a}ngig sind und die Tumorgenese einschr{\"a}nken. F{\"u}r das Onkogen Myc ist gezeigt, dass es sowohl Apoptose als auch unter bestimmten Umst{\"a}nden Seneszenz ausl{\"o}sen kann und damit sein eigenes onkogenes Potential limitiert. Im Rahmen dieser Arbeit konnte ich mich mit diesen Tumor-suppressiven Mechanismen in zwei unabh{\"a}ngigen Teilprojekten besch{\"a}ftigen. Eine erh{\"o}hte Expression von Myc steigert die Proliferation der Zellen, induziert aber gleichzeitig Doppelstrangbr{\"u}che an der DNA. Durch den dadurch entstandenen Schaden wird die DNA-Schadensantwort ausgel{\"o}st, die zum Beispiel zur Phosphorylierung von H2A.X durch die Kinasen Atm und Atr f{\"u}hrt. Ein weiteres putatives Zielprotein dieser Kinasen ist HectH9, das abh{\"a}ngig vom DNA-Schaden das mitochondriale Protein Mcl1 ubiquitiniert und es damit f{\"u}r den proteasomalen Abbau markiert. Im ungestressten Zustand interagiert das in der mitochondrialen Membran lokalisierte Protein Mcl1 mit proapoptotischen Proteinen und h{\"a}lt deren inerten Status aufrecht. Die Reduktion der Mcl1-Mengen ist essentiell, um die proapoptotischen Proteine zu aktivieren, dadurch die Freisetzung von Zytochrom C aus dem Mitochondrium zu veranlassen und damit den Prozess der Apoptose einleiten zu k{\"o}nnen. Anhand der in dieser Arbeit dokumentierten Daten bietet sich Mcl1 als potentielles Zielprotein f{\"u}r pharmazeutisch Strategien zur Therapie Myc-induzierter Tumore an. Im Idealfall erh{\"o}ht eine verst{\"a}rkte Reduktion seiner Proteinmengen die zellul{\"a}re Apoptose und verringert somit das Tumorwachstum. Im murinen T-Zell-Lymphom wird die Myc-abh{\"a}ngige Tumorgenese durch eine Mutation der Proteinsequenz von Myc verlangsamt. Diese Mutation unterbindet die Bindung von Myc zu Miz1 und verhindert dadurch die Repression von Zielgenen. Abh{\"a}ngig von der Interaktion von Myc zu Miz1 gelingt die Inhibition der Transkription des Zellzyklusinhibitors p15Ink4b. Die Interaktion von Myc und Miz1 ist essentiell um die TGFbeta-abh{\"a}ngige Seneszenz zu umgehen. Dar{\"u}ber hinaus ist Myc direkt an der Repression von TGFbeta beteiligt. Entgegen der bisher verwendeten Modelle konnte in dieser Arbeit gezeigt werden, dass Myc unabh{\"a}ngig von Miz1 zu den Promotoren der reprimierten Zielgene rekrutiert wird und die Bindung der beiden Proteine offensichtlich nur f{\"u}r die Transrepression essentiell ist.}, subject = {Myc}, language = {de} } @phdthesis{Ulbrich2010, author = {Ulbrich, Jannes}, title = {Integrierung und biochemische Charakterisierung ektoper BMP Rezeptoren in Zellmembranen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-55462}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {BMPs vermitteln ihre zellul{\"a}ren Effekte durch Rekrutierung und Aktivierung von zwei Typen spezifischer, membranst{\"a}ndiger Rezeptoren. Die genauen Mechanismen der Rezeptorakivierung und die Komposition eines funktionellen, signalvermittelnden Komplexes auf der Zelloberfl{\"a}che sind in den letzten Jahren genau untersucht worden. Die dimere Natur aller BMPs, die Promiskuitivit{\"a}t der BMPs sowie der entsprechenden Rezeptoren und die unterschiedlichen Rezeptorkonformationen (PFC, BISC) erschweren jedoch die experimentelle Zug{\"a}nglichkeit dieser Proteinfamilie. Um den Einfluss der Membranverankerung der Rezeptoren auf deren Affinit{\"a}t zu einzelnen Liganden zu untersuchen, wurden verschiedene Methoden evaluiert, die eine quantitative Kopplung an Plasmamembranen erm{\"o}glichten. Die BMP Rezeptorektodom{\"a}nen wurden u.a. mittels einer lysin-spezifischen Kopplung lipidiert, oder aber als His6-Ektodom{\"a}nen an membranintegrierte Chelatlipide gekoppelt.}, subject = {Knochen-Morphogenese-Proteine}, language = {de} } @phdthesis{Harth2010, author = {Harth, Stefan}, title = {Molecular Recognition in BMP Ligand-Receptor Interactions}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-52797}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Bone Morphogenetic Proteins (BMPs) are secreted multifunctional signaling proteins that play an important role during development, maintenance and regeneration of tissues and organs in almost all vertebrates and invertebrates. BMPs transmit their signals by binding to two types of serine-/threonine-kinase receptors. BMPs bind first to their high affinity receptor, thereby recruiting their low affinity receptor into the complex. This receptor assembly starts a Smad (Small mothers against decapentaplegic) protein signaling cascade which regulates the transcription of responsive genes. Up to date, only seven type I and five type II receptors are known for more than 30 ligands. Therefore, many BMP ligands can recruit more than one receptor subtype. Vice versa, receptors can bind to several ligands, indicating a highly promiscuous ligand-receptor interaction. This raises the following questions: (i) How are BMPs able to induce ligand-specific signals, despite forming complexes with identical receptor composition and (ii) how are they able to recognize and bind various binding partners in a highly specific manner. From the ligand's point of view, heterodimeric BMPs are valuable tools for studying the interplay between different sets of receptors, thereby providing new insights into how the various BMP signals can be generated. This study describes the expression and purification of the heterodimers BMP-2/6 and -2/7 from E.coli cells. BIAcore interaction studies and various in vitro cell activity assays revealed that the generated heterodimers are biologically active. Furthermore, BMP-2/6 and -2/7 exhibit a higher biological activity in most of the cell assays compared to their homodimeric counterparts. In addition, the BMP type I receptor BMPR-IA is involved in heterodimeric BMP signaling. However, the usage of other type I receptor subtypes (e.g. ActR-I) building a heteromeric ligand-receptor type I complex as indicated in previous works could not be determined conclusively. Furthermore, BMP heterodimers seem to require only one type I receptor for signaling. From the receptors' point of view, the BMP type I receptor BMPR-IA is a prime example for its promiscuous binding to different BMP ligands. The extracellular binding interface of BMPR-IA is mainly unfolded in its unbound form, requiring a large induced fit to adopt the conformation when bound to its ligand BMP-2. In order to unravel whether the binding promiscuity of BMPR-IA is linked to structural plasticity of its binding interface, the interaction of BMPR-IA bound to an antibody Fab fragment was investigated. The Fab fragment was selected because of its ability to recognize the BMP-2 binding epitope on BMPR-IA, thus neutralizing the BMP-2 mediated receptor activation. This study describes the crystal structure of the complex of the extracellular domain of BMPR-IA bound to the antibody Fab fragment AbyD1556. The crystal structure revealed that the contact surface of BMPR-IA overlaps extensively with the contact surface of BMPR-IA for BMP-2 interaction. Although the contact epitopes of BMPR-IA to both binding partners coincide, the three-dimensional structures of BMPR-IA in both complexes differ significantly. In contrast to the structural differences, alanine-scanning mutagenesis of BMPR-IA showed that the functional determinants for binding to both the antibody and BMP-2 are almost identical. Comparing the structures of BMPR-IA bound to BMP-2 or to the Fab AbyD1556 with the structure of unbound BMPR-IA revealed that binding of BMPR-IA to its interaction partners follows a selection fit mechanism, possibly indicating that the ligand promiscuity of BMPR-IA is inherently encoded by structural adaptability.}, subject = {Knochen-Morphogenese-Proteine}, language = {en} }