@phdthesis{Nuwal2010, author = {Nuwal, Nidhi}, title = {Optogenetic investigation of nervous system functions using walking behavior and genome wide transcript analysis of Synapsin and Sap47 mutants of Drosophila}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-51694}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {PART I Animals need to constantly evaluate their external environment in order to survive. In some cases the internal state of the animal changes to cope with it's surrounding. In our study we wanted to investigate the role of amines in modulating internal states of Drosophila. We have designed a behavioral paradigm where the flies are fixed in space but can walk on a small styrofoam ball suspended by a gentle stream of air. The walking activity of flies was used as behavioral readout. PART I Animals need to constantly evaluate their external environment in order to survive. In some cases the internal state of the animal changes to cope with it's surrounding. In our study we wanted to investigate the role of amines in modulating internal states of Drosophila. We have designed a behavioral paradigm where the flies are fixed in space but can walk on a small styrofoam ball suspended by a gentle stream of air. The walking activity of flies was used as behavioral readout. An operant training paradigm was established by coupling one of the walking directions to incidence of heat punishment. We observed that animals quickly realized the contingency of punishment with walking direction and avoided walking in the punished direction in the presence of punishment, but did not continue walking in the unpunished direction in the absence of the punishment. This would indicate that the flies do not form a memory for the punished direction or rapidly erase it under new conditions. On having established the paradigm with heat punishment we have attempted to activate selected subsets of neuronal populations of Drosophila while they were walking on the ball. The selective activation of neurons was achieved by expressing the light-activated ion channel channelrhodopsin-2 (ChR2) using the Gal4-UAS system and coupling the unidirectional walking of the animals on the ball with the incidence of blue light required to activate the channels and depolarize the neurons. The feasibility of this approach was tested by light-activating sugar sensitive gustatory receptor neurons expressing ChR2, we found that when the light was actuated the flies preferred to turn in one direction the optically "rewarded" direction. Next we similarly activated different subsets of aminergic neurons. We observed that in our setup animals avoided to turn in the direction which was coupled to activation of dopaminergic neurons indicating that release of dopamine is disliked by the animals. This is in accordance with associative learning experiments where dopamine is believed to underlie the formation of an association between a neutral conditioned stimulus with the aversive unconditioned stimulus. However, when we activated tyraminergic/octopaminergic neurons we did not observe any directional preference. The activation of dopaminergic and tyraminergic/octopaminergic neurons led to arousal of the animals indicating that we were indeed successful in activating those neurons. Also, the activation of serotonergic neurons did not have any effect on directional preference of the animals. With this newly established paradigm it will be interesting to find out if in insects like in mammals a reward mediating system exists and to test subsets of aminergic or peptidergic neurons that could possibly be involved in a reward signaling system which has not been detected in our study. Also, it would be interesting to localize neuropile regions that would be involved in mediating choice behavior in our paradigm. PART II In collaboration with S. Kneitz (IZKF Wuerzburg) and T. Nuwal we performed genome-wide expression analysis of two pre-synaptic mutants - Synapsin (Syn97) and Synapse associated protein of 47 kDa (Sap47156). The rationale behind these experiments was to identify genes that were up- or down-regulated due to these mutations. The microarray experiments provided us with several candidate genes some of which we have verified by qPCR. From our qPCR analysis we can conclude that out of the verified genes only Cirl transcripts seem to be reproducibly down regulated in Synapsin mutants. The Cirl gene codes for a calcium independent receptor for latrotoxin. Further qPCR experiments need to be performed to verify other candidate genes. The molecular interactions between CIRL and SYN or their genes should now be investigated in detail.}, subject = {Taufliege}, language = {en} }