@article{HempelmannHartlebvanStraatenetal.2021, author = {Hempelmann, Alexander and Hartleb, Laura and van Straaten, Monique and Hashemi, Hamidreza and Zeelen, Johan P. and Bongers, Kevin and Papavasiliou, F. Nina and Engstler, Markus and Stebbins, C. Erec and Jones, Nicola G.}, title = {Nanobody-mediated macromolecular crowding induces membrane fission and remodeling in the African trypanosome}, series = {Cell Reports}, volume = {37}, journal = {Cell Reports}, number = {5}, doi = {10.1016/j.celrep.2021.109923}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-270285}, year = {2021}, abstract = {The dense variant surface glycoprotein (VSG) coat of African trypanosomes represents the primary host-pathogen interface. Antigenic variation prevents clearing of the pathogen by employing a large repertoire of antigenically distinct VSG genes, thus neutralizing the host's antibody response. To explore the epitope space of VSGs, we generate anti-VSG nanobodies and combine high-resolution structural analysis of VSG-nanobody complexes with binding assays on living cells, revealing that these camelid antibodies bind deeply inside the coat. One nanobody causes rapid loss of cellular motility, possibly due to blockage of VSG mobility on the coat, whose rapid endocytosis and exocytosis are mechanistically linked to Trypanosoma brucei propulsion and whose density is required for survival. Electron microscopy studies demonstrate that this loss of motility is accompanied by rapid formation and shedding of nanovesicles and nanotubes, suggesting that increased protein crowding on the dense membrane can be a driving force for membrane fission in living cells.}, language = {en} } @article{KunzRuehlingMoldovanetal.2021, author = {Kunz, Tobias C. and R{\"u}hling, Marcel and Moldovan, Adriana and Paprotka, Kerstin and Kozjak-Pavlovic, Vera and Rudel, Thomas and Fraunholz, Martin}, title = {The Expandables: Cracking the Staphylococcal Cell Wall for Expansion Microscopy}, series = {Frontiers in Cellular and Infection Microbiology}, volume = {11}, journal = {Frontiers in Cellular and Infection Microbiology}, issn = {2235-2988}, doi = {10.3389/fcimb.2021.644750}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-232292}, year = {2021}, abstract = {Expansion Microscopy (ExM) is a novel tool improving the resolution of fluorescence microscopy by linking the sample into a hydrogel that gets physically expanded in water. Previously, we have used ExM to visualize the intracellular Gram-negative pathogens Chlamydia trachomatis, Simkania negevensis, and Neisseria gonorrhoeae. Gram-positive bacteria have a rigid and thick cell wall that impedes classic expansion strategies. Here we developed an approach, which included a series of enzymatic treatments resulting in isotropic 4× expansion of the Gram-positive pathogen Staphylococcus aureus. We further demonstrate the suitability of the technique for imaging of planktonic bacteria as well as endocytosed, intracellular bacteria at a spatial resolution of approximately 60 nm with conventional confocal laser scanning microscopy.}, language = {en} }