@phdthesis{Schmalz2023, author = {Schmalz, Fabian Dominik}, title = {Processing of behaviorally relevant stimuli at different levels in the bee brain}, doi = {10.25972/OPUS-28882}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-288824}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {The behavior of honeybees and bumblebees relies on a constant sensory integration of abiotic or biotic stimuli. As eusocial insects, a sophisticated intraspecific communication as well as the processing of multisensory cues during foraging is of utter importance. To tackle the arising challenges, both honeybees and bumblebees have evolved a sophisticated olfactory and visual processing system. In both organisms, olfactory reception starts at the antennae, where olfactory sensilla cover the antennal surface in a sex-specific manner. These sensilla house olfactory receptor neurons (ORN) that express olfactory receptors. ORNs send their axons via four tracts to the antennal lobe (AL), the prime olfactory processing center in the bee brain. Here, ORNs specifically innervate spheroidal structures, so-called glomeruli, in which they form synapses with local interneurons and projection neurons (PN). PNs subsequently project the olfactory information via two distinct tracts, the medial and the lateral antennal-lobe tract, to the mushroom body (MB), the main center of sensory integration and memory formation. In the honeybee calyx, the sensory input region of the MB, PNs synapse on Kenyon cells (KC), the principal neuron type of the MB. Olfactory PNs mainly innervate the lip and basal ring layer of the calyx. In addition, the basal ring receives input from visual PNs, making it the first site of integration of visual and olfactory information. Visual PNs, carrying sensory information from the optic lobes, send their terminals not only to the to the basal ring compartment but also to the collar of the calyx. Receiving olfactory or visual input, KCs send their axons along the MB peduncle and terminate in the main output regions of the MB, the medial and the vertical lobe (VL) in a layer-specific manner. In the MB lobes, KCs synapse onto mushroom body output neurons (MBON). In so far barely understood processes, multimodal information is integrated by the MBONs and then relayed further into the protocerebral lobes, the contralateral brain hemisphere, or the central brain among others. This dissertation comprises a dichotomous structure that (i) aims to gain more insight into the olfactory processing in bumblebees and (ii) sets out to broaden our understanding of visual processing in honeybee MBONs. The first manuscript examines the olfactory processing of Bombus terrestris and specifically investigates sex-specific differences. We used behavioral (absolute conditioning) and electrophysiological approaches to elaborate the processing of ecologically relevant odors (components of plant odors and pheromones) at three distinct levels, in the periphery, in the AL and during olfactory conditioning. We found both sexes to form robust memories after absolute conditioning and to generalize towards the carbon chain length of the presented odors. On the contrary, electroantennographic (EAG) activity showed distinct stimulus and sex-specific activity, e.g. reduced activity towards citronellol in drones. Interestingly, extracellular multi-unit recordings in the AL confirmed stimulus and sex-specific differences in olfactory processing, but did not reflect the differences previously found in the EAG. Here, farnesol and 2,3-dihydrofarnesol, components of sex-specific pheromones, show a distinct representation, especially in workers, corroborating the results of a previous study. This explicitly different representation suggests that the peripheral stimulus representation is an imperfect indication for neuronal representation in high-order neuropils and ecological importance of a specific odor. The second manuscript investigates MBONs in honeybees to gain more insights into visual processing in the VL. Honeybee MBONs can be categorized into visually responsive, olfactory responsive and multimodal. To clarify which visual features are represented at this high-order integration center, we used extracellular multi-unit recordings in combination with visual and olfactory stimulation. We show for the first time that information about brightness and wavelength is preserved in the VL. Furthermore, we defined three specific classes of visual MBONs that distinctly encode the intensity, identity or simply the onset of a stimulus. The identity-subgroup exhibits a specific tuning towards UV light. These results support the view of the MB as the center of multimodal integration that categorizes sensory input and subsequently channels this information into specific MBON populations. Finally, I discuss differences between the peripheral representations of stimuli and their distinct processing in high-order neuropils. The unique activity of farnesol in manuscript 1 or the representation of UV light in manuscript 2 suggest that the peripheral representation of a stimulus is insufficient as a sole indicator for its neural activity in subsequent neuropils or its putative behavioral importance. In addition, I discuss the influence of hard-wired concepts or plasticity induced changes in the sensory pathways on the processing of such key stimuli in the peripheral reception as well as in high-order centers like the AL or the MB. The MB as the center of multisensory integration has been broadly examined for its olfactory processing capabilities and receives increasing interest about its visual coding properties. To further unravel its role of sensory integration and to include neglected modalities, future studies need to combine additional approaches and gain more insights on the multimodal aspects in both the input and output region.}, subject = {Biene}, language = {en} } @phdthesis{Mronz2004, author = {Mronz, Markus}, title = {Die visuell motivierte Objektwahl laufender Taufliegen (Drosophila melanogaster) - Verhaltensphysiologie, Modellbildung und Implementierung in einem Roboter}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-11748}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {Im Rahmen dieser Arbeit wurden offene Fragen zur Objektwahl, zur Objektbeibehaltung und zur Aufgabe von Zielobjekten bei laufenden Taufliegen (Drosophila melanogaster) untersucht. Die Erkenntnisse zur Objektwahl wurden als kybernetisches Modell formuliert, auf einem eigens daf{\"u}r konstruierten, autonom navigierenden Roboter mit Kameraauge implementiert und dessen Verhalten bei verschiedenen Landmarkenkonstellationen quantitativ mit dem Orientierungsverhalten laufender Fliegen verglichen. Es war bekannt, dass Drosophila in einer Wahlsituation zwischen unterschiedlich weit entfernten Objekten eine ausgepr{\"a}gte Pr{\"a}ferenz f{\"u}r nahe Objekte zeigt, wobei die Entfernung {\"u}ber das Ausmaß der retinalen Bildverschiebung auf dem Auge (Parallaxe) erfasst wird. In der vorliegenden Arbeit wurde analysiert, ob die Parallaxe streng aus der Eigenbewegung der Fliege resultieren muss oder ob Eigenbewegung der Objekte N{\"a}he vort{\"a}uschen und deren Attraktivit{\"a}t erh{\"o}hen kann. Es wurde gezeigt, dass die Pr{\"a}ferenz f{\"u}r ein Objekt bei Drosophila umso gr{\"o}ßer wird, je mehr Bewegung dessen Abbild auf der Retina erzeugt; die relative Verschiebung des Objektabbildes muss dabei nicht mit der Eigenbewegung der Fliege gekoppelt sein. {\"U}berraschenderweise verschwand die Pr{\"a}ferenz f{\"u}r nahe Objekte, wenn eine zusammenstehende Gruppe aus einer nahen und mehreren fernen Objekten pr{\"a}sentiert wurden, solange sie zusammen einen Sehwinkel von weniger als etwa 90° einnahmen. Diese Beobachtung ist konform mit einer Vorstellung, wonach Bewegung {\"u}ber gr{\"o}ßere Augenbereiche integriert und nicht einzelnen Objekten zugeordnet wird. Obwohl Drosophila bei gleichem Pr{\"a}sentationsort auf der Retina die gr{\"o}ßere parallaktische Bewegung bevorzugte, wurden bei gleicher Entfernung dennoch frontalere gegen{\"u}ber lateraleren Objekten bevorzugt. Es wird postuliert, dass der frontale und der caudale Sehbereich eine Verst{\"a}rkung erfahren, die die physikalisch bedingt geringere Parallaxe {\"u}berkompensiert. Laufende Fliegen reagieren verz{\"o}gert auf die Pr{\"a}sentation eines Objekts; dies wird im Sinne einer zeitlichen Bewegungsintegration interpretiert. Die darauf folgende Richtungs{\"a}nderung h{\"a}ngt vom Pr{\"a}sentationswinkel des Objektes ab. Erscheint das Objekt frontolateral, findet eine Hinwendung statt, erscheint es caudolateral, kommt es bevorzugt zur Abwendung. Eine weitere wichtige kognitive Leistung der Fliege ist das Aufgeben eines zuvor ausgew{\"a}hlten Ziels, wenn sich dieses Ziel w{\"a}hrend des Anlaufs als unerreichbar herausstellt. In der vorliegenden Arbeit wurde gezeigt, dass Fliegen mit stark reduzierten Pilzk{\"o}rpern erheblich mehr Zeit ben{\"o}tigen als wildtypische Fliegen, um vom gew{\"a}hlten Zielobjekt abzulassen. Dieser dem Perseveranzverhalten bei Parkinson-kranken Menschen {\"a}hnliche Ph{\"a}notyp wurde unabh{\"a}ngig von der Methode der Ausschaltung der Pilzk{\"o}rper gefunden. Die Dauer der Perseveranz nahm mit zunehmender Attraktivit{\"a}t des Zielobjekts, d. h. mit abnehmender Distanz, zu. Es wird vorgeschlagen, dass die Pilzk{\"o}rper f{\"u}r die Evaluierung von eingehender sensorischer Information oder f{\"u}r Entscheidungsfindungen im Allgemeinen ben{\"o}tig werden. Basierend auf diesen Ergebnissen wurde ein Minimalmodell f{\"u}r die visuelle Orientierung nach Landmarken entwickelt. Das Modell beinhaltet eine zeitliche Integration des optischen Flusses in einem frontolateralen und einem caudolateralen Kompartiment pro Auge. Je nachdem, in welchem Kompartiment eine festgesetzte Schwelle zuerst erreicht wird, kommt es entweder zu einer Hin- (frontolateral) oder zu einer Abwendungsreaktion (caudolateral). Eine Gewichtungsfunktion kompensiert die geringe parallaktische Verschiebung in diesen Sehregionen. Das Modell wurde in einem mobilen Roboter mit Kameraauge implementiert und mit dem visuellen Orientierungsverhalten der Fliege quantitativ verglichen. Der Roboter war in der Lage, viele Aspekte der Landmarkenwahl von laufenden Fliegen erfolgreich zu reproduzieren und fliegen{\"a}hnliches, autonomes Orientierungsverhalten unter verschiedenen Landmarkenkonfigurationen zu zeigen.}, subject = {Taufliege}, language = {de} }