@phdthesis{Spaeth2015, author = {Sp{\"a}th, Florian Leonhard}, title = {Pr{\"a}paration und Charakterisierung einwandiger Kohlenstoffnanorohr-Polyfluoren-Komplexe}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-123874}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Im Fokus dieser Arbeit standen (6,5)-SWNT-PFO-BPy-Komplexe als Vertreter f{\"u}r polyfluorenstabilisierte, einwandige Kohlenstoffnanor{\"o}hren. In einem ersten Projekt wurden pr{\"a}parative Verfahren zur Dispergierung und Abscheidung dieser Proben weiterentwickelt. Es ist gelungen, die Ansatzgr{\"o}ße von 15 mL auf 200 mL hochzuskalieren sowie d{\"u}nne SWNT-Filme {\"u}ber Rotationsbeschichtung herzustellen. Des Weiteren wurde die lichtinduzierte Dynamik in halbleitenden SWNTs von der ps- bis zur µs-Zeitskala untersucht. Hier wurde ein umfassendes Bild zur Singulett- und Triplett-Exzitonendynamik in halbleitenden Kohlenstoffnanor{\"o}hren gezeichnet, welches maßgeblich durch diffusionslimitierte Prozesse gepr{\"a}gt ist. Abschließend wurde eine Methode vorgestellt, mit der sich Informationen zur Struktur von SWNT-Polymer-Komplexen und anderen supramolekularen Systemen gewinnen lassen. Diese basiert auf der Kombination von polarisationswinkelaufgel{\"o}ster Absorptionsspektroskopie an anisotropen Proben und globaler Datenanalyse.}, subject = {Kohlenstoff-Nanor{\"o}hre}, language = {de} } @phdthesis{NitschgebLube2017, author = {Nitsch [geb. Lube], J{\"o}rn S.}, title = {Struktur, Reaktivit{\"a}t und Photophysik von Kupfer(I)-Komplexen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-123787}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {In der Arbeit wurden die Strukturen, Reaktivit{\"a}ten und die Photophysik von verschiedenen Kupfer(I)-Komplexen untersucht. Dazu wurden zun{\"a}chst Kupfer(I)-Halogenid und -Pseudohalogenid Verbindungen der Typen [CuX] und [Cu2I2] mit Phenanthrolin und dessen Derivaten sowohl strukturell als auch photophysikalisch detailliert charakterisiert. Diese Verbindungen weisen eine breite XMLCT-Absorption zwischen 450-600 nm und Emissionsbanden zwischen 550-850 nm im Festk{\"o}rper auf. Es zeigte sich f{\"u}r diese strukturell einfachen Verbindungen ein komplexes und sehr unterschiedliches photophysikalisches Verhalten. Dabei wurde neben strukturellen Parametern, wie z.B. π-Wechselwirkungen, auch der Einfluss des Halogen bzw. Pseudohalogenatoms untersucht. Es konnte gezeigt werden, dass mindestens zwei angeregte Zust{\"a}nde an der Emission von [CuI(dtbphen)] (16) und [CuBr(dtbphen)] (17) im Feststoff beteiligt sind und es wurden m{\"o}gliche Mechanismen wie TADF und die Beteiligung von zwei Triplett Zust{\"a}nden diskutiert. Die Glasmatrixmessungen von 17 in 2-Methyltetrahydrofuran wie auch die temperaturabh{\"a}ngigen Messungen von [Cu2(µ2-I)2(dmphen)2] (21) zeigen im Gegensatz dazu keinen Hinweis auf TADF. In der Summe zeichnet sich ein komplexes photophysikalisches Bild dieser Komplexe, in der neben molekularen Parametern auch Festk{\"o}rpereffekte eine wichtige Rolle spielen und die eine einfache Zuordnung zu einem bestimmten Mechanismus schwierig machen. Neuartige Verbindungen mit einem Cuban-Strukturmotiv [L4Cu4X4] (X = Br (32) und Cl (33)), die von einem Phosphininliganden (L = 2,4-Diphenyl-5-methyl-6-(2,3-dimethylphenyl)-phosphinin, 31) koordiniert sind, wurden in einer weiteren Studie photophysikalisch untersucht. Im Gegensatz zu anderen Schweratomkomplexen des Phosphinins, wie z.B. [Ir(C^P)3] (mit C^P = cyclometalliertes 2,4,6-Triphenylphosphinin) zeigen die Cu(I)-Verbindungen bereits bei Raumtemperatur eine intensive Phosphoreszenz. Die LE-Emission kann auf der Grundlage von DFT-Rechnungen einem 3XMLCT Zustand zugeordnet werden. Im Kontrast zu strukturanalogen Pyridin Komplexen ist kein clusterzentrierter 3CC {\"U}bergang festzustellen, sondern eine schwache HE-Emissionsbande ist mit großer Wahrscheinlichkeit der Restfluoreszenz des Phosphininliganden 31 geschuldet. Eine weitere Ligandenmodifikation wurde mit der Einf{\"u}hrung von NHCs als starke σ-Donor Liganden erreicht. Einerseits wurde die Photophysik von [Cu2Cl2(NHC^Pic)2]-Systemen (mit NHC^Pic = N-Aryl-N'-(2-picolyl) imidazolin 2 yliden) untersucht, die einen Hybridliganden mit Picolyl- und NHC Funktionalit{\"a}t beinhalten. Es konnte gezeigt werden, dass diese Verkn{\"u}pfung eines starken σ-Donoren und eines π*-Akzeptors zu hohen Quantenausbeuten von bis zu 70\% f{\"u}hren kann, wenn zus{\"a}tzlich auch dispersive Cu-Cu-Wechselwirkungen vorhanden sind. Die Effizienz der Emission kann sich bei Anwesenheit dieser dispersiven Interaktionen im Gegensatz zu Systemen ohne kurze Cu-Cu-Abst{\"a}nde um den Faktor zwei erh{\"o}hen. Dinukleare Strukturen von Typ [Cu2Cl2(IMesPicR)2] wurden f{\"u}r die Komplexe 41-44 gefunden, die einen Donor-Substituenten in der para-Position der Picolyl-Funktionalit{\"a}t tragen. F{\"u}r eine Nitro-Gruppe in der 4-Postion konnte der mononukleare Komplex [CuCl(IMesPicR)] (45) isoliert werden. Ferner k{\"o}nnen die Substituenten am NHC ebenfalls die Strukturen im Festk{\"o}rper beeinflussen. So kann f{\"u}r 46 eine polymere Struktur [CuCl(IDippPic)]∞ festgestellt werden. Die Emission in diesen Systemen ist mit einer Elektronenumverteilung aus der Pyridin- und Carbenfunktionalit{\"a}t in das Kupfer- bzw. Chloridatom (LMXCT-{\"U}bergang) verbunden. Dabei zeigen die Komplexe [Cu2Cl2(IMesPicH)2] (41), [Cu2Cl2(IMesPicMe)2] (42) und [Cu2Cl2(IMesPicCl)2] (43) zus{\"a}tzlich Anzeichen von TADF. Zum anderem sind NHC Liganden und dispersive Cu-Cu-Wechselwirkungen Gegenstand einer weiteren strukturellen und photophysikalischen Studie. In dieser wurden die Cu-Cu-Abst{\"a}nde in dinuklearen Kupfer(I)-Bis-NHC-Komplexen [Cu2(tBuIm2(R^R))2](PF6)2 (50-52) durch die Einf{\"u}hrung von Methylen, Ethylen und Propylenbr{\"u}ckeneinheiten systematisch variiert. Die erhaltenen Komplexe wurden strukturell und photophysikalisch mit einem mononuklearen Komplex [Cu(tBu2Im)2](PF6) (53) verglichen. Dadurch konnte der Einfluss von kurzen Cu-Cu-Abst{\"a}nden auf die Emissionseigenschaften gezeigt werden, auch wenn der genaue Ursprung einer ebenfalls beobachteten Mechanochromie noch nicht g{\"a}nzlich aufgekl{\"a}rt ist. M{\"o}glich ist die Existenz verschiedener Konformere in den Pulverproben (Polymorphie), die das Entstehen niederenergetischer Banden in der zerriebenen, amorphen Pulverprobe von [Cu2(tBuIm2(C3H6))2](PF6)2 (52), aber auch die duale Emissionen von [Cu2(tBuIm2(CH2))2](PF6)2 (50) und [Cu2(tBuIm2(C2H4))2](PF6)2 (51) erkl{\"a}ren k{\"o}nnten. Die hochenergetische Bande kann f{\"u}r alle Komplexe aufgrund von DFT-und TD-DFT-Rechnungen, 3LMCT Zust{\"a}nden zugeordnet werden, w{\"a}hrend niederenergetische Emissionsbanden immer dann zu erwarten sind, wenn 3MC-Zust{\"a}nde populiert werden k{\"o}nnen, bzw. wenn dispersive Cu-Cu-Wechselwirkungen m{\"o}glich sind. Der letzte Beweis steht jedoch mit der Isolation anderer polymorpher Phasen und derer photophysikalischen Charakterisierung noch aus. Im letzten Teil dieser Arbeit wurde gezeigt, wie die Deformations und Interaktionsenergie das Koordinationsverhalten und die Reaktivit{\"a}t von d10 [M(NHC)n]-Komplexen beeinflussen k{\"o}nnen. Hierzu wurden die Bildung von d10-[M(NHC)n]-Komplexen (n = 1-4; mit M = Co-, Rh-, Ir-, Ni, Pd, Pt, Cu+, Ag+, Au+, Zn2+, Cd2+ and Hg2+) in der Gasphase und in polarer L{\"o}sung (DMSO) auf DFT-D3(BJ)-ZORA-BLYP/TZ2P-Niveau berechnet und die Bindungssituation der Metall-Carben-Bindung analysiert. Dabei zeigt sich, dass dikoordinierte Komplexe [M(NHC)2] f{\"u}r alle d10-Metalle thermodynamisch stabile Spezies darstellen, jedoch jede weitere h{\"o}here Koordination stark vom Metall bzw. von der Deformationsenergie abh{\"a}ngen. Hier konnte auf Grundlage einer quantitativen Kohn Sham-Molek{\"u}lorbitalbetrachtung die Ursache f{\"u}r die unterschiedlich hohen Werte der Deformationsenergie (ΔEdef) in den NHC‒M‒NHC-Fragmenten aufgekl{\"a}rt werden. Hohe Werte sind auf ein effektives sd-Mischen bzw. auf das σ-Bindungsger{\"u}sts zur{\"u}ckzuf{\"u}hren, w{\"a}hrend niedrige bzw. negative Werte von ΔEdef mit einem signifikanten π-R{\"u}ckbindungsanteil assoziiert sind. Zudem ist ein hoher elektrostatischer Anteil in der Interaktionsenergie ein wichtiger Faktor. So k{\"o}nnen trotz hoher berechneter Werte f{\"u}r die Deformationsenergien der Gruppe 12 (Zn(II), Cd(II) und Hg(II)), tetrakoordinierte Komplexe der Form [M(NHC)4] hohe thermodynamische Stabilit{\"a}t aufweisen. Diese allgemeinen Beobachtungen sollten nicht auf den NHC-Liganden beschr{\"a}nkt sein, und sind deswegen f{\"u}r Synthesen und Katalysezyklen von Bedeutung, in denen d10-MLn (n = 1-4) Komplexe Anwendung finden.}, subject = {Kupferkomplexe}, language = {de} }